serai/processor/src/main.rs
Luke Parker 5e565fa3ef
Correct when the Processor starts using the first key
It waited for CONFIRMATIONS + 1 confirmations, instead of CONFIRMATIONS
confirmations.

Also adds a lib interface to access the coin traits and its constants.
2023-07-24 15:36:35 -04:00

756 lines
27 KiB
Rust

use std::{
time::Duration,
sync::Arc,
collections::{VecDeque, HashMap},
};
use zeroize::{Zeroize, Zeroizing};
use transcript::{Transcript, RecommendedTranscript};
use ciphersuite::group::GroupEncoding;
use frost::{curve::Ciphersuite, ThresholdKeys};
use log::{info, warn, error};
use tokio::time::sleep;
use scale::Decode;
use serai_client::{
primitives::{MAX_DATA_LEN, BlockHash, NetworkId},
tokens::primitives::{OutInstruction, OutInstructionWithBalance},
in_instructions::primitives::{
Shorthand, RefundableInInstruction, InInstructionWithBalance, Batch,
},
};
use messages::{SubstrateContext, CoordinatorMessage, ProcessorMessage};
use serai_env as env;
use message_queue::{Service, client::MessageQueue};
mod plan;
pub use plan::*;
mod coins;
use coins::{OutputType, Output, PostFeeBranch, Block, Coin};
#[cfg(feature = "bitcoin")]
use coins::Bitcoin;
#[cfg(feature = "monero")]
use coins::Monero;
mod additional_key;
pub use additional_key::additional_key;
mod db;
pub use db::*;
mod coordinator;
pub use coordinator::*;
mod key_gen;
use key_gen::{KeyConfirmed, KeyGen};
mod signer;
use signer::{SignerEvent, Signer};
mod substrate_signer;
use substrate_signer::{SubstrateSignerEvent, SubstrateSigner};
mod scanner;
use scanner::{ScannerEvent, Scanner, ScannerHandle};
mod scheduler;
use scheduler::Scheduler;
#[cfg(test)]
mod tests;
async fn get_latest_block_number<C: Coin>(coin: &C) -> usize {
loop {
match coin.get_latest_block_number().await {
Ok(number) => {
return number;
}
Err(e) => {
error!(
"couldn't get the latest block number in main's error-free get_block. {} {}",
"this should only happen if the node is offline. error: ", e
);
sleep(Duration::from_secs(10)).await;
}
}
}
}
async fn get_block<C: Coin>(coin: &C, block_number: usize) -> C::Block {
loop {
match coin.get_block(block_number).await {
Ok(block) => {
return block;
}
Err(e) => {
error!("couldn't get block {block_number} in main's error-free get_block. error: {}", e);
sleep(Duration::from_secs(10)).await;
}
}
}
}
async fn get_fee<C: Coin>(coin: &C, block_number: usize) -> C::Fee {
// TODO2: Use an fee representative of several blocks
get_block(coin, block_number).await.median_fee()
}
async fn prepare_send<C: Coin>(
coin: &C,
keys: ThresholdKeys<C::Curve>,
block_number: usize,
fee: C::Fee,
plan: Plan<C>,
) -> (Option<(C::SignableTransaction, C::Eventuality)>, Vec<PostFeeBranch>) {
loop {
match coin.prepare_send(keys.clone(), block_number, plan.clone(), fee).await {
Ok(prepared) => {
return prepared;
}
Err(e) => {
error!("couldn't prepare a send for plan {}: {e}", hex::encode(plan.id()));
// The processor is either trying to create an invalid TX (fatal) or the node went
// offline
// The former requires a patch, the latter is a connection issue
// If the latter, this is an appropriate sleep. If the former, we should panic, yet
// this won't flood the console ad infinitum
sleep(Duration::from_secs(60)).await;
}
}
}
}
// Items which are mutably borrowed by Tributary.
// Any exceptions to this have to be carefully monitored in order to ensure consistency isn't
// violated.
struct TributaryMutable<C: Coin, D: Db> {
// The following are actually mutably borrowed by Substrate as well.
// - Substrate triggers key gens, and determines which to use.
// - SubstrateBlock events cause scheduling which causes signing.
//
// This is still considered Tributary-mutable as most mutation (preprocesses/shares) happens by
// the Tributary.
//
// Creation of tasks is by Substrate, yet this is safe since the mutable borrow is transferred to
// Tributary.
//
// Tributary stops mutating a key gen attempt before Substrate is made aware of it, ensuring
// Tributary drops its mutable borrow before Substrate acquires it. Tributary will maintain a
// mutable borrow on the *key gen task*, yet the finalization code can successfully run for any
// attempt.
//
// The only other note is how the scanner may cause a signer task to be dropped, effectively
// invalidating the Tributary's mutable borrow. The signer is coded to allow for attempted usage
// of a dropped task.
key_gen: KeyGen<C, D>,
signers: HashMap<Vec<u8>, Signer<C, D>>,
// This is also mutably borrowed by the Scanner.
// The Scanner starts new sign tasks.
// The Tributary mutates already-created signed tasks, potentially completing them.
// Substrate may mark tasks as completed, invalidating any existing mutable borrows.
// The safety of this follows as written above.
// TODO: There should only be one SubstrateSigner at a time (see #277)
substrate_signers: HashMap<Vec<u8>, SubstrateSigner<D>>,
}
// Items which are mutably borrowed by Substrate.
// Any exceptions to this have to be carefully monitored in order to ensure consistency isn't
// violated.
struct SubstrateMutable<C: Coin, D: Db> {
// The scanner is expected to autonomously operate, scanning blocks as they appear.
// When a block is sufficiently confirmed, the scanner mutates the signer to try and get a Batch
// signed.
// The scanner itself only mutates its list of finalized blocks and in-memory state though.
// Disk mutations to the scan-state only happen when Substrate says to.
// This can't be mutated as soon as a Batch is signed since the mutation which occurs then is
// paired with the mutations caused by Burn events. Substrate's ordering determines if such a
// pairing exists.
scanner: ScannerHandle<C, D>,
// Schedulers take in new outputs, from the scanner, and payments, from Burn events on Substrate.
// These are paired when possible, in the name of efficiency. Accordingly, both mutations must
// happen by Substrate.
schedulers: HashMap<Vec<u8>, Scheduler<C>>,
}
async fn sign_plans<C: Coin, D: Db>(
txn: &mut D::Transaction<'_>,
coin: &C,
substrate_mutable: &mut SubstrateMutable<C, D>,
signers: &mut HashMap<Vec<u8>, Signer<C, D>>,
context: SubstrateContext,
plans: Vec<Plan<C>>,
) {
let mut plans = VecDeque::from(plans);
let mut block_hash = <C::Block as Block<C>>::Id::default();
block_hash.as_mut().copy_from_slice(&context.coin_latest_finalized_block.0);
// block_number call is safe since it unwraps
let block_number = substrate_mutable
.scanner
.block_number(&block_hash)
.await
.expect("told to sign_plans on a context we're not synced to");
let fee = get_fee(coin, block_number).await;
while let Some(plan) = plans.pop_front() {
let id = plan.id();
info!("preparing plan {}: {:?}", hex::encode(id), plan);
let key = plan.key.to_bytes();
MainDb::<C, D>::save_signing(txn, key.as_ref(), block_number.try_into().unwrap(), &plan);
let (tx, branches) =
prepare_send(coin, signers.get_mut(key.as_ref()).unwrap().keys(), block_number, fee, plan)
.await;
for branch in branches {
substrate_mutable
.schedulers
.get_mut(key.as_ref())
.expect("didn't have a scheduler for a key we have a plan for")
.created_output(branch.expected, branch.actual);
}
if let Some((tx, eventuality)) = tx {
substrate_mutable.scanner.register_eventuality(block_number, id, eventuality.clone()).await;
signers.get_mut(key.as_ref()).unwrap().sign_transaction(txn, id, tx, eventuality).await;
}
}
}
async fn handle_coordinator_msg<D: Db, C: Coin, Co: Coordinator>(
txn: &mut D::Transaction<'_>,
coin: &C,
coordinator: &mut Co,
tributary_mutable: &mut TributaryMutable<C, D>,
substrate_mutable: &mut SubstrateMutable<C, D>,
msg: &Message,
) {
// If this message expects a higher block number than we have, halt until synced
async fn wait<C: Coin, D: Db>(scanner: &ScannerHandle<C, D>, block_hash: &BlockHash) {
let mut needed_hash = <C::Block as Block<C>>::Id::default();
needed_hash.as_mut().copy_from_slice(&block_hash.0);
let block_number = loop {
// Ensure our scanner has scanned this block, which means our daemon has this block at
// a sufficient depth
// The block_number may be set even if scanning isn't complete
let Some(block_number) = scanner.block_number(&needed_hash).await else {
warn!(
"node is desynced. we haven't scanned {} which should happen after {} confirms",
hex::encode(&needed_hash),
C::CONFIRMATIONS,
);
sleep(Duration::from_secs(10)).await;
continue;
};
break block_number;
};
// While the scanner has cemented this block, that doesn't mean it's been scanned for all
// keys
// ram_scanned will return the lowest scanned block number out of all keys
// This is a safe call which fulfills the unfulfilled safety requirements from the prior call
while scanner.ram_scanned().await < block_number {
sleep(Duration::from_secs(1)).await;
}
// TODO: Sanity check we got an AckBlock (or this is the AckBlock) for the block in
// question
/*
let synced = |context: &SubstrateContext, key| -> Result<(), ()> {
// Check that we've synced this block and can actually operate on it ourselves
let latest = scanner.latest_scanned(key);
if usize::try_from(context.coin_latest_finalized_block).unwrap() < latest {
log::warn!(
"coin node disconnected/desynced from rest of the network. \
our block: {latest:?}, network's acknowledged: {}",
context.coin_latest_finalized_block,
);
Err(())?;
}
Ok(())
};
*/
}
if let Some(required) = msg.msg.required_block() {
// wait only reads from, it doesn't mutate, the scanner
wait(&substrate_mutable.scanner, &required).await;
}
// TODO: Shouldn't we create a txn here and pass it around as needed?
// The txn would ack this message ID. If we detect this message ID as handled in the DB,
// we'd move on here. Only after committing the TX would we report it as acked.
match msg.msg.clone() {
CoordinatorMessage::KeyGen(msg) => {
coordinator
.send(ProcessorMessage::KeyGen(tributary_mutable.key_gen.handle(txn, msg).await))
.await;
}
CoordinatorMessage::Sign(msg) => {
tributary_mutable.signers.get_mut(msg.key()).unwrap().handle(txn, msg).await;
}
CoordinatorMessage::Coordinator(msg) => {
tributary_mutable.substrate_signers.get_mut(msg.key()).unwrap().handle(txn, msg).await;
}
CoordinatorMessage::Substrate(msg) => {
match msg {
messages::substrate::CoordinatorMessage::ConfirmKeyPair { context, set, key_pair } => {
// This is the first key pair for this coin so no block has been finalized yet
let activation_number = if context.coin_latest_finalized_block.0 == [0; 32] {
assert!(tributary_mutable.signers.is_empty());
assert!(tributary_mutable.substrate_signers.is_empty());
assert!(substrate_mutable.schedulers.is_empty());
// Wait until a coin's block's time exceeds Serai's time
// TODO: This assumes the coin has a monotonic clock for its blocks' times, which
// isn't a viable assumption
// If the latest block number is 10, then the block indexd by 1 has 10 confirms
// 10 + 1 - 10 = 1
while get_block(
coin,
(get_latest_block_number(coin).await + 1).saturating_sub(C::CONFIRMATIONS),
)
.await
.time() <
context.serai_time
{
info!(
"serai confirmed the first key pair for a set. {} {}",
"we're waiting for a coin's finalized block's time to exceed unix time ",
context.serai_time,
);
sleep(Duration::from_secs(5)).await;
}
// Find the first block to do so
let mut earliest = (get_latest_block_number(coin).await + 1).saturating_sub(C::CONFIRMATIONS);
assert!(get_block(coin, earliest).await.time() >= context.serai_time);
// earliest > 0 prevents a panic if Serai creates keys before the genesis block
// which... should be impossible
// Yet a prevented panic is a prevented panic
while (earliest > 0) && (get_block(coin, earliest - 1).await.time() >= context.serai_time) {
earliest -= 1;
}
// Use this as the activation block
earliest
} else {
let mut activation_block = <C::Block as Block<C>>::Id::default();
activation_block.as_mut().copy_from_slice(&context.coin_latest_finalized_block.0);
// This block_number call is safe since it unwraps
substrate_mutable
.scanner
.block_number(&activation_block)
.await
.expect("KeyConfirmed from context we haven't synced")
};
info!("activating {set:?}'s keys at {activation_number}");
// See TributaryMutable's struct definition for why this block is safe
let KeyConfirmed { substrate_keys, coin_keys } =
tributary_mutable.key_gen.confirm(txn, set, key_pair).await;
tributary_mutable.substrate_signers.insert(
substrate_keys.group_key().to_bytes().to_vec(),
SubstrateSigner::new(substrate_keys),
);
let key = coin_keys.group_key();
substrate_mutable.scanner.rotate_key(txn, activation_number, key).await;
substrate_mutable
.schedulers
.insert(key.to_bytes().as_ref().to_vec(), Scheduler::<C>::new(key));
tributary_mutable
.signers
.insert(key.to_bytes().as_ref().to_vec(), Signer::new(coin.clone(), coin_keys));
}
messages::substrate::CoordinatorMessage::SubstrateBlock {
context,
network,
block,
key: key_vec,
burns,
} => {
assert_eq!(network, C::NETWORK);
let mut block_id = <C::Block as Block<C>>::Id::default();
block_id.as_mut().copy_from_slice(&context.coin_latest_finalized_block.0);
let key = <C::Curve as Ciphersuite>::read_G::<&[u8]>(&mut key_vec.as_ref()).unwrap();
// We now have to acknowledge every block for this key up to the acknowledged block
let (blocks, outputs) =
substrate_mutable.scanner.ack_up_to_block(txn, key, block_id).await;
// Since this block was acknowledged, we no longer have to sign the batch for it
for block in blocks {
for (_, signer) in tributary_mutable.substrate_signers.iter_mut() {
signer.batch_signed(txn, block);
}
}
let mut payments = vec![];
for out in burns {
let OutInstructionWithBalance {
instruction: OutInstruction { address, data },
balance,
} = out;
assert_eq!(balance.coin.network(), C::NETWORK);
if let Ok(address) = C::Address::try_from(address.consume()) {
// TODO: Add coin to payment
payments.push(Payment {
address,
data: data.map(|data| data.consume()),
amount: balance.amount.0,
});
}
}
let plans = substrate_mutable
.schedulers
.get_mut(&key_vec)
.expect("key we don't have a scheduler for acknowledged a block")
.schedule(outputs, payments);
coordinator
.send(ProcessorMessage::Coordinator(
messages::coordinator::ProcessorMessage::SubstrateBlockAck {
network,
block,
plans: plans.iter().map(|plan| plan.id()).collect(),
},
))
.await;
sign_plans(
txn,
coin,
substrate_mutable,
// See commentary in TributaryMutable for why this is safe
&mut tributary_mutable.signers,
context,
plans,
)
.await;
}
}
}
}
}
async fn boot<C: Coin, D: Db>(
raw_db: &mut D,
coin: &C,
) -> (MainDb<C, D>, TributaryMutable<C, D>, SubstrateMutable<C, D>) {
let mut entropy_transcript = {
let entropy = Zeroizing::new(env::var("ENTROPY").expect("entropy wasn't specified"));
if entropy.len() != 64 {
panic!("entropy isn't the right length");
}
let bytes = Zeroizing::new(hex::decode(entropy).expect("entropy wasn't hex-formatted"));
let mut entropy = Zeroizing::new([0; 32]);
let entropy_mut: &mut [u8] = entropy.as_mut();
entropy_mut.copy_from_slice(bytes.as_ref());
let mut transcript = RecommendedTranscript::new(b"Serai Processor Entropy");
transcript.append_message(b"entropy", entropy);
transcript
};
// TODO: Save a hash of the entropy to the DB and make sure the entropy didn't change
let mut entropy = |label| {
let mut challenge = entropy_transcript.challenge(label);
let mut res = Zeroizing::new([0; 32]);
let res_mut: &mut [u8] = res.as_mut();
res_mut.copy_from_slice(&challenge[.. 32]);
challenge.zeroize();
res
};
// We don't need to re-issue GenerateKey orders because the coordinator is expected to
// schedule/notify us of new attempts
let key_gen = KeyGen::<C, _>::new(raw_db.clone(), entropy(b"key-gen_entropy"));
// The scanner has no long-standing orders to re-issue
let (mut scanner, active_keys) = Scanner::new(coin.clone(), raw_db.clone());
let schedulers = HashMap::<Vec<u8>, Scheduler<C>>::new();
let mut substrate_signers = HashMap::new();
let mut signers = HashMap::new();
let main_db = MainDb::new(raw_db.clone());
for key in &active_keys {
// TODO: Load existing schedulers
let (substrate_keys, coin_keys) = key_gen.keys(key);
let substrate_key = substrate_keys.group_key();
let substrate_signer = SubstrateSigner::new(substrate_keys);
// We don't have to load any state for this since the Scanner will re-fire any events
// necessary
substrate_signers.insert(substrate_key.to_bytes().to_vec(), substrate_signer);
let mut signer = Signer::new(coin.clone(), coin_keys);
// Load any TXs being actively signed
let key = key.to_bytes();
for (block_number, plan) in main_db.signing(key.as_ref()) {
let block_number = block_number.try_into().unwrap();
let fee = get_fee(coin, block_number).await;
let id = plan.id();
info!("reloading plan {}: {:?}", hex::encode(id), plan);
let (Some((tx, eventuality)), _) =
prepare_send(coin, signer.keys(), block_number, fee, plan).await else {
panic!("previously created transaction is no longer being created")
};
scanner.register_eventuality(block_number, id, eventuality.clone()).await;
// TODO: Reconsider if the Signer should have the eventuality, or if just the coin/scanner
// should
let mut txn = raw_db.txn();
signer.sign_transaction(&mut txn, id, tx, eventuality).await;
// This should only have re-writes of existing data
drop(txn);
}
signers.insert(key.as_ref().to_vec(), signer);
}
(
main_db,
TributaryMutable { key_gen, substrate_signers, signers },
SubstrateMutable { scanner, schedulers },
)
}
async fn run<C: Coin, D: Db, Co: Coordinator>(mut raw_db: D, coin: C, mut coordinator: Co) {
// We currently expect a contextless bidirectional mapping between these two values
// (which is that any value of A can be interpreted as B and vice versa)
// While we can write a contextual mapping, we have yet to do so
// This check ensures no coin which doesn't have a bidirectional mapping is defined
assert_eq!(<C::Block as Block<C>>::Id::default().as_ref().len(), BlockHash([0u8; 32]).0.len());
let (mut main_db, mut tributary_mutable, mut substrate_mutable) = boot(&mut raw_db, &coin).await;
// We can't load this from the DB as we can't guarantee atomic increments with the ack function
let mut last_coordinator_msg = None;
loop {
// Check if the signers have events
// The signers will only have events after the following select executes, which will then
// trigger the loop again, hence why having the code here with no timer is fine
for (key, signer) in tributary_mutable.signers.iter_mut() {
while let Some(msg) = signer.events.pop_front() {
match msg {
SignerEvent::ProcessorMessage(msg) => {
coordinator.send(ProcessorMessage::Sign(msg)).await;
}
SignerEvent::SignedTransaction { id, tx } => {
coordinator
.send(ProcessorMessage::Sign(messages::sign::ProcessorMessage::Completed {
key: key.clone(),
id,
tx: tx.as_ref().to_vec(),
}))
.await;
let mut txn = raw_db.txn();
// This does mutate the Scanner, yet the eventuality protocol is only run to mutate
// the signer, which is Tributary mutable (and what's currently being mutated)
substrate_mutable.scanner.drop_eventuality(id).await;
main_db.finish_signing(&mut txn, key, id);
txn.commit();
// TODO
// 1) We need to stop signing whenever a peer informs us or the chain has an
// eventuality
// 2) If a peer informed us of an eventuality without an outbound payment, stop
// scanning the chain for it (or at least ack it's solely for sanity purposes?)
// 3) When the chain has an eventuality, if it had an outbound payment, report it up to
// Substrate for logging purposes
}
}
}
}
for (key, signer) in tributary_mutable.substrate_signers.iter_mut() {
while let Some(msg) = signer.events.pop_front() {
match msg {
SubstrateSignerEvent::ProcessorMessage(msg) => {
coordinator.send(ProcessorMessage::Coordinator(msg)).await;
}
SubstrateSignerEvent::SignedBatch(batch) => {
coordinator
.send(ProcessorMessage::Substrate(messages::substrate::ProcessorMessage::Update {
key: key.clone(),
batch,
}))
.await;
}
}
}
}
tokio::select! {
// This blocks the entire processor until it finishes handling this message
// KeyGen specifically may take a notable amount of processing time
// While that shouldn't be an issue in practice, as after processing an attempt it'll handle
// the other messages in the queue, it may be beneficial to parallelize these
// They could likely be parallelized by type (KeyGen, Sign, Substrate) without issue
msg = coordinator.recv() => {
assert_eq!(msg.id, (last_coordinator_msg.unwrap_or(msg.id - 1) + 1));
last_coordinator_msg = Some(msg.id);
// Only handle this if we haven't already
if !main_db.handled_message(msg.id) {
let mut txn = raw_db.txn();
MainDb::<C, D>::handle_message(&mut txn, msg.id);
// This is isolated to better think about how its ordered, or rather, about how the other
// cases aren't ordered
//
// While the coordinator messages are ordered, they're not deterministically ordered
// Tributary-caused messages are deterministically ordered, and Substrate-caused messages
// are deterministically-ordered, yet they're both shoved into a singular queue
// The order at which they're shoved in together isn't deterministic
//
// This is safe so long as Tributary and Substrate messages don't both expect mutable
// references over the same data
handle_coordinator_msg(
&mut txn,
&coin,
&mut coordinator,
&mut tributary_mutable,
&mut substrate_mutable,
&msg,
).await;
txn.commit();
}
coordinator.ack(msg).await;
},
msg = substrate_mutable.scanner.events.recv() => {
let mut txn = raw_db.txn();
match msg.unwrap() {
ScannerEvent::Block { key, block, batch, outputs } => {
let key = key.to_bytes().as_ref().to_vec();
let mut block_hash = [0; 32];
block_hash.copy_from_slice(block.as_ref());
let batch = Batch {
network: C::NETWORK,
id: batch,
block: BlockHash(block_hash),
instructions: outputs.iter().filter_map(|output| {
// If these aren't externally received funds, don't handle it as an instruction
if output.kind() != OutputType::External {
return None;
}
let mut data = output.data();
let max_data_len = MAX_DATA_LEN.try_into().unwrap();
if data.len() > max_data_len {
error!(
"data in output {} exceeded MAX_DATA_LEN ({MAX_DATA_LEN}): {}",
hex::encode(output.id()),
data.len(),
);
data = &data[.. max_data_len];
}
let shorthand = Shorthand::decode(&mut data).ok()?;
let instruction = RefundableInInstruction::try_from(shorthand).ok()?;
// TODO2: Set instruction.origin if not set (and handle refunds in general)
Some(InInstructionWithBalance {
instruction: instruction.instruction,
balance: output.balance(),
})
}).collect()
};
// Start signing this batch
tributary_mutable.substrate_signers.get_mut(&key).unwrap().sign(&mut txn, batch).await;
},
ScannerEvent::Completed(id, tx) => {
// We don't know which signer had this plan, so inform all of them
for (_, signer) in tributary_mutable.signers.iter_mut() {
signer.eventuality_completion(&mut txn, id, &tx).await;
}
},
}
txn.commit();
},
}
}
}
#[tokio::main]
async fn main() {
if std::env::var("RUST_LOG").is_err() {
std::env::set_var("RUST_LOG", serai_env::var("RUST_LOG").unwrap_or_else(|| "info".to_string()));
}
env_logger::init();
let db = Arc::new(
rocksdb::TransactionDB::<rocksdb::SingleThreaded>::open_default(
env::var("DB_PATH").expect("path to DB wasn't specified"),
)
.unwrap(),
);
// Network configuration
let url = {
let login = env::var("NETWORK_RPC_LOGIN").expect("network RPC login wasn't specified");
let hostname = env::var("NETWORK_RPC_HOSTNAME").expect("network RPC hostname wasn't specified");
let port = env::var("NETWORK_RPC_PORT").expect("network port domain wasn't specified");
"http://".to_string() + &login + "@" + &hostname + ":" + &port
};
let network_id = match env::var("NETWORK").expect("network wasn't specified").as_str() {
"bitcoin" => NetworkId::Bitcoin,
"monero" => NetworkId::Monero,
_ => panic!("unrecognized network"),
};
let coordinator = MessageQueue::from_env(Service::Processor(network_id));
match network_id {
#[cfg(feature = "bitcoin")]
NetworkId::Bitcoin => run(db, Bitcoin::new(url).await, coordinator).await,
#[cfg(feature = "monero")]
NetworkId::Monero => run(db, Monero::new(url), coordinator).await,
_ => panic!("spawning a processor for an unsupported network"),
}
}