serai/crypto/evrf/divisors/src/lib.rs
Luke Parker e4e4245ee3
One Round DKG (#589)
* Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++

* Initial eVRF implementation

Not quite done yet. It needs to communicate the resulting points and proofs to
extract them from the Pedersen Commitments in order to return those, and then
be tested.

* Add the openings of the PCs to the eVRF as necessary

* Add implementation of secq256k1

* Make DKG Encryption a bit more flexible

No longer requires the use of an EncryptionKeyMessage, and allows pre-defined
keys for encryption.

* Make NUM_BITS an argument for the field macro

* Have the eVRF take a Zeroizing private key

* Initial eVRF-based DKG

* Add embedwards25519 curve

* Inline the eVRF into the DKG library

Due to how we're handling share encryption, we'd either need two circuits or to
dedicate this circuit to the DKG. The latter makes sense at this time.

* Add documentation to the eVRF-based DKG

* Add paragraph claiming robustness

* Update to the new eVRF proof

* Finish routing the eVRF functionality

Still needs errors and serialization, along with a few other TODOs.

* Add initial eVRF DKG test

* Improve eVRF DKG

Updates how we calculcate verification shares, improves performance when
extracting multiple sets of keys, and adds more to the test for it.

* Start using a proper error for the eVRF DKG

* Resolve various TODOs

Supports recovering multiple key shares from the eVRF DKG.

Inlines two loops to save 2**16 iterations.

Adds support for creating a constant time representation of scalars < NUM_BITS.

* Ban zero ECDH keys, document non-zero requirements

* Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519

* Add Ristretto eVRF trait impls

* Support participating multiple times in the eVRF DKG

* Only participate once per key, not once per key share

* Rewrite processor key-gen around the eVRF DKG

Still a WIP.

* Finish routing the new key gen in the processor

Doesn't touch the tests, coordinator, nor Substrate yet.
`cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor`
does pass.

* Deduplicate and better document in processor key_gen

* Update serai-processor tests to the new key gen

* Correct amount of yx coefficients, get processor key gen test to pass

* Add embedded elliptic curve keys to Substrate

* Update processor key gen tests to the eVRF DKG

* Have set_keys take signature_participants, not removed_participants

Now no one is removed from the DKG. Only `t` people publish the key however.

Uses a BitVec for an efficient encoding of the participants.

* Update the coordinator binary for the new DKG

This does not yet update any tests.

* Add sensible Debug to key_gen::[Processor, Coordinator]Message

* Have the DKG explicitly declare how to interpolate its shares

Removes the hack for MuSig where we multiply keys by the inverse of their
lagrange interpolation factor.

* Replace Interpolation::None with Interpolation::Constant

Allows the MuSig DKG to keep the secret share as the original private key,
enabling deriving FROST nonces consistently regardless of the MuSig context.

* Get coordinator tests to pass

* Update spec to the new DKG

* Get clippy to pass across the repo

* cargo machete

* Add an extra sleep to ensure expected ordering of `Participation`s

* Update orchestration

* Remove bad panic in coordinator

It expected ConfirmationShare to be n-of-n, not t-of-n.

* Improve documentation on  functions

* Update TX size limit

We now no longer have to support the ridiculous case of having 49 DKG
participations within a 101-of-150 DKG. It does remain quite high due to
needing to _sign_ so many times. It'd may be optimal for parties with multiple
key shares to independently send their preprocesses/shares (despite the
overhead that'll cause with signatures and the transaction structure).

* Correct error in the Processor spec document

* Update a few comments in the validator-sets pallet

* Send/Recv Participation one at a time

Sending all, then attempting to receive all in an expected order, wasn't working
even with notable delays between sending messages. This points to the mempool
not working as expected...

* Correct ThresholdKeys serialization in modular-frost test

* Updating existing TX size limit test for the new DKG parameters

* Increase time allowed for the DKG on the GH CI

* Correct construction of signature_participants in serai-client tests

Fault identified by akil.

* Further contextualize DkgConfirmer by ValidatorSet

Caught by a safety check we wouldn't reuse preprocesses across messages. That
raises the question of we were prior reusing preprocesses (reusing keys)?
Except that'd have caused a variety of signing failures (suggesting we had some
staggered timing avoiding it in practice but yes, this was possible in theory).

* Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests

* Correct shimmed setting of a secq256k1 key

* cargo fmt

* Don't use `[0; 32]` for the embedded keys in the coordinator rotation test

The key_gen function expects the random values already decided.

* Big-endian secq256k1 scalars

Also restores the prior, safer, Encryption::register function.
2024-09-19 21:43:26 -04:00

287 lines
8.9 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]
#![allow(non_snake_case)]
use group::{
ff::{Field, PrimeField},
Group,
};
mod poly;
pub use poly::*;
#[cfg(test)]
mod tests;
/// A curve usable with this library.
pub trait DivisorCurve: Group {
/// An element of the field this curve is defined over.
type FieldElement: PrimeField;
/// The A in the curve equation y^2 = x^3 + A x + B.
fn a() -> Self::FieldElement;
/// The B in the curve equation y^2 = x^3 + A x + B.
fn b() -> Self::FieldElement;
/// y^2 - x^3 - A x - B
///
/// Section 2 of the security proofs define this modulus.
///
/// This MUST NOT be overriden.
// TODO: Move to an extension trait
fn divisor_modulus() -> Poly<Self::FieldElement> {
Poly {
// 0 y**1, 1 y*2
y_coefficients: vec![Self::FieldElement::ZERO, Self::FieldElement::ONE],
yx_coefficients: vec![],
x_coefficients: vec![
// - A x
-Self::a(),
// 0 x^2
Self::FieldElement::ZERO,
// - x^3
-Self::FieldElement::ONE,
],
// - B
zero_coefficient: -Self::b(),
}
}
/// Convert a point to its x and y coordinates.
///
/// Returns None if passed the point at infinity.
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)>;
}
/// Calculate the slope and intercept between two points.
///
/// This function panics when `a @ infinity`, `b @ infinity`, `a == b`, or when `a == -b`.
pub(crate) fn slope_intercept<C: DivisorCurve>(a: C, b: C) -> (C::FieldElement, C::FieldElement) {
let (ax, ay) = C::to_xy(a).unwrap();
debug_assert_eq!(C::divisor_modulus().eval(ax, ay), C::FieldElement::ZERO);
let (bx, by) = C::to_xy(b).unwrap();
debug_assert_eq!(C::divisor_modulus().eval(bx, by), C::FieldElement::ZERO);
let slope = (by - ay) *
Option::<C::FieldElement>::from((bx - ax).invert())
.expect("trying to get slope/intercept of points sharing an x coordinate");
let intercept = by - (slope * bx);
debug_assert!(bool::from((ay - (slope * ax) - intercept).is_zero()));
debug_assert!(bool::from((by - (slope * bx) - intercept).is_zero()));
(slope, intercept)
}
// The line interpolating two points.
fn line<C: DivisorCurve>(a: C, mut b: C) -> Poly<C::FieldElement> {
// If they're both the point at infinity, we simply set the line to one
if bool::from(a.is_identity() & b.is_identity()) {
return Poly {
y_coefficients: vec![],
yx_coefficients: vec![],
x_coefficients: vec![],
zero_coefficient: C::FieldElement::ONE,
};
}
// If either point is the point at infinity, or these are additive inverses, the line is
// `1 * x - x`. The first `x` is a term in the polynomial, the `x` is the `x` coordinate of these
// points (of which there is one, as the second point is either at infinity or has a matching `x`
// coordinate).
if bool::from(a.is_identity() | b.is_identity()) || (a == -b) {
let (x, _) = C::to_xy(if !bool::from(a.is_identity()) { a } else { b }).unwrap();
return Poly {
y_coefficients: vec![],
yx_coefficients: vec![],
x_coefficients: vec![C::FieldElement::ONE],
zero_coefficient: -x,
};
}
// If the points are equal, we use the line interpolating the sum of these points with the point
// at infinity
if a == b {
b = -a.double();
}
let (slope, intercept) = slope_intercept::<C>(a, b);
// Section 4 of the proofs explicitly state the line `L = y - lambda * x - mu`
// y - (slope * x) - intercept
Poly {
y_coefficients: vec![C::FieldElement::ONE],
yx_coefficients: vec![],
x_coefficients: vec![-slope],
zero_coefficient: -intercept,
}
}
/// Create a divisor interpolating the following points.
///
/// Returns None if:
/// - No points were passed in
/// - The points don't sum to the point at infinity
/// - A passed in point was the point at infinity
#[allow(clippy::new_ret_no_self)]
pub fn new_divisor<C: DivisorCurve>(points: &[C]) -> Option<Poly<C::FieldElement>> {
// A single point is either the point at infinity, or this doesn't sum to the point at infinity
// Both cause us to return None
if points.len() < 2 {
None?;
}
if points.iter().sum::<C>() != C::identity() {
None?;
}
// Create the initial set of divisors
let mut divs = vec![];
let mut iter = points.iter().copied();
while let Some(a) = iter.next() {
if a == C::identity() {
None?;
}
let b = iter.next();
if b == Some(C::identity()) {
None?;
}
// Draw the line between those points
divs.push((a + b.unwrap_or(C::identity()), line::<C>(a, b.unwrap_or(-a))));
}
let modulus = C::divisor_modulus();
// Pair them off until only one remains
while divs.len() > 1 {
let mut next_divs = vec![];
// If there's an odd amount of divisors, carry the odd one out to the next iteration
if (divs.len() % 2) == 1 {
next_divs.push(divs.pop().unwrap());
}
while let Some((a, a_div)) = divs.pop() {
let (b, b_div) = divs.pop().unwrap();
// Merge the two divisors
let numerator = a_div.mul_mod(b_div, &modulus).mul_mod(line::<C>(a, b), &modulus);
let denominator = line::<C>(a, -a).mul_mod(line::<C>(b, -b), &modulus);
let (q, r) = numerator.div_rem(&denominator);
assert_eq!(r, Poly::zero());
next_divs.push((a + b, q));
}
divs = next_divs;
}
// Return the unified divisor
Some(divs.remove(0).1)
}
#[cfg(any(test, feature = "pasta"))]
mod pasta {
use group::{ff::Field, Curve};
use pasta_curves::{
arithmetic::{Coordinates, CurveAffine},
Ep, Fp, Eq, Fq,
};
use crate::DivisorCurve;
impl DivisorCurve for Ep {
type FieldElement = Fp;
fn a() -> Self::FieldElement {
Self::FieldElement::ZERO
}
fn b() -> Self::FieldElement {
Self::FieldElement::from(5u64)
}
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)> {
Option::<Coordinates<_>>::from(point.to_affine().coordinates())
.map(|coords| (*coords.x(), *coords.y()))
}
}
impl DivisorCurve for Eq {
type FieldElement = Fq;
fn a() -> Self::FieldElement {
Self::FieldElement::ZERO
}
fn b() -> Self::FieldElement {
Self::FieldElement::from(5u64)
}
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)> {
Option::<Coordinates<_>>::from(point.to_affine().coordinates())
.map(|coords| (*coords.x(), *coords.y()))
}
}
}
#[cfg(any(test, feature = "ed25519"))]
mod ed25519 {
use group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
};
use dalek_ff_group::{FieldElement, EdwardsPoint};
impl crate::DivisorCurve for EdwardsPoint {
type FieldElement = FieldElement;
// Wei25519 a/b
// https://www.ietf.org/archive/id/draft-ietf-lwig-curve-representations-02.pdf E.3
fn a() -> Self::FieldElement {
let mut be_bytes =
hex::decode("2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa984914a144").unwrap();
be_bytes.reverse();
let le_bytes = be_bytes;
Self::FieldElement::from_repr(le_bytes.try_into().unwrap()).unwrap()
}
fn b() -> Self::FieldElement {
let mut be_bytes =
hex::decode("7b425ed097b425ed097b425ed097b425ed097b425ed097b4260b5e9c7710c864").unwrap();
be_bytes.reverse();
let le_bytes = be_bytes;
Self::FieldElement::from_repr(le_bytes.try_into().unwrap()).unwrap()
}
// https://www.ietf.org/archive/id/draft-ietf-lwig-curve-representations-02.pdf E.2
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)> {
if bool::from(point.is_identity()) {
None?;
}
// Extract the y coordinate from the compressed point
let mut edwards_y = point.to_bytes();
let x_is_odd = edwards_y[31] >> 7;
edwards_y[31] &= (1 << 7) - 1;
let edwards_y = Self::FieldElement::from_repr(edwards_y).unwrap();
// Recover the x coordinate
let edwards_y_sq = edwards_y * edwards_y;
let D = -Self::FieldElement::from(121665u64) *
Self::FieldElement::from(121666u64).invert().unwrap();
let mut edwards_x = ((edwards_y_sq - Self::FieldElement::ONE) *
((D * edwards_y_sq) + Self::FieldElement::ONE).invert().unwrap())
.sqrt()
.unwrap();
if u8::from(bool::from(edwards_x.is_odd())) != x_is_odd {
edwards_x = -edwards_x;
}
// Calculate the x and y coordinates for Wei25519
let edwards_y_plus_one = Self::FieldElement::ONE + edwards_y;
let one_minus_edwards_y = Self::FieldElement::ONE - edwards_y;
let wei_x = (edwards_y_plus_one * one_minus_edwards_y.invert().unwrap()) +
(Self::FieldElement::from(486662u64) * Self::FieldElement::from(3u64).invert().unwrap());
let c =
(-(Self::FieldElement::from(486662u64) + Self::FieldElement::from(2u64))).sqrt().unwrap();
let wei_y = c * edwards_y_plus_one * (one_minus_edwards_y * edwards_x).invert().unwrap();
Some((wei_x, wei_y))
}
}
}