serai/networks/monero/src/transaction.rs
Boog900 394db44b30
Some checks failed
Coordinator Tests / build (push) Has been cancelled
Full Stack Tests / build (push) Has been cancelled
Lint / clippy (macos-13) (push) Has been cancelled
Lint / clippy (macos-14) (push) Has been cancelled
Lint / clippy (ubuntu-latest) (push) Has been cancelled
Lint / clippy (windows-latest) (push) Has been cancelled
Lint / deny (push) Has been cancelled
Lint / fmt (push) Has been cancelled
Lint / machete (push) Has been cancelled
Monero Tests / unit-tests (push) Has been cancelled
Tests / test-infra (push) Has been cancelled
Tests / test-substrate (push) Has been cancelled
Tests / test-serai-client (push) Has been cancelled
Monero Tests / integration-tests (v0.17.3.2) (push) Has been cancelled
Monero Tests / integration-tests (v0.18.2.0) (push) Has been cancelled
networks/ Tests / test-networks (push) Has been cancelled
no-std build / build (push) Has been cancelled
Processor Tests / build (push) Has been cancelled
Monero: fix signature hash for V1 txs (#598)
* fix signature hash for V1 txs

* fix CI
2024-08-23 20:34:54 -04:00

625 lines
18 KiB
Rust

use core::cmp::Ordering;
use std_shims::{
vec,
vec::Vec,
io::{self, Read, Write},
};
use zeroize::Zeroize;
use curve25519_dalek::edwards::{EdwardsPoint, CompressedEdwardsY};
use crate::{
io::*,
primitives::keccak256,
ring_signatures::RingSignature,
ringct::{bulletproofs::Bulletproof, PrunedRctProofs},
};
/// An input in the Monero protocol.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Input {
/// An input for a miner transaction, which is generating new coins.
Gen(usize),
/// An input spending an output on-chain.
ToKey {
/// The pool this input spends an output of.
amount: Option<u64>,
/// The decoys used by this input's ring, specified as their offset distance from each other.
key_offsets: Vec<u64>,
/// The key image (linking tag, nullifer) for the spent output.
key_image: EdwardsPoint,
},
}
impl Input {
/// Write the Input.
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
match self {
Input::Gen(height) => {
w.write_all(&[255])?;
write_varint(height, w)
}
Input::ToKey { amount, key_offsets, key_image } => {
w.write_all(&[2])?;
write_varint(&amount.unwrap_or(0), w)?;
write_vec(write_varint, key_offsets, w)?;
write_point(key_image, w)
}
}
}
/// Serialize the Input to a `Vec<u8>`.
pub fn serialize(&self) -> Vec<u8> {
let mut res = vec![];
self.write(&mut res).unwrap();
res
}
/// Read an Input.
pub fn read<R: Read>(r: &mut R) -> io::Result<Input> {
Ok(match read_byte(r)? {
255 => Input::Gen(read_varint(r)?),
2 => {
let amount = read_varint(r)?;
// https://github.com/monero-project/monero/
// blob/00fd416a99686f0956361d1cd0337fe56e58d4a7/
// src/cryptonote_basic/cryptonote_format_utils.cpp#L860-L863
// A non-RCT 0-amount input can't exist because only RCT TXs can have a 0-amount output
// That's why collapsing to None if the amount is 0 is safe, even without knowing if RCT
let amount = if amount == 0 { None } else { Some(amount) };
Input::ToKey {
amount,
key_offsets: read_vec(read_varint, r)?,
key_image: read_torsion_free_point(r)?,
}
}
_ => Err(io::Error::other("Tried to deserialize unknown/unused input type"))?,
})
}
}
/// An output in the Monero protocol.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Output {
/// The pool this output should be sorted into.
pub amount: Option<u64>,
/// The key which can spend this output.
pub key: CompressedEdwardsY,
/// The view tag for this output, as used to accelerate scanning.
pub view_tag: Option<u8>,
}
impl Output {
/// Write the Output.
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
write_varint(&self.amount.unwrap_or(0), w)?;
w.write_all(&[2 + u8::from(self.view_tag.is_some())])?;
w.write_all(&self.key.to_bytes())?;
if let Some(view_tag) = self.view_tag {
w.write_all(&[view_tag])?;
}
Ok(())
}
/// Write the Output to a `Vec<u8>`.
pub fn serialize(&self) -> Vec<u8> {
let mut res = Vec::with_capacity(8 + 1 + 32);
self.write(&mut res).unwrap();
res
}
/// Read an Output.
pub fn read<R: Read>(rct: bool, r: &mut R) -> io::Result<Output> {
let amount = read_varint(r)?;
let amount = if rct {
if amount != 0 {
Err(io::Error::other("RCT TX output wasn't 0"))?;
}
None
} else {
Some(amount)
};
let view_tag = match read_byte(r)? {
2 => false,
3 => true,
_ => Err(io::Error::other("Tried to deserialize unknown/unused output type"))?,
};
Ok(Output {
amount,
key: CompressedEdwardsY(read_bytes(r)?),
view_tag: if view_tag { Some(read_byte(r)?) } else { None },
})
}
}
/// An additional timelock for a Monero transaction.
///
/// Monero outputs are locked by a default timelock. If a timelock is explicitly specified, the
/// longer of the two will be the timelock used.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub enum Timelock {
/// No additional timelock.
None,
/// Additionally locked until this block.
Block(usize),
/// Additionally locked until this many seconds since the epoch.
Time(u64),
}
impl Timelock {
/// Write the Timelock.
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
match self {
Timelock::None => write_varint(&0u8, w),
Timelock::Block(block) => write_varint(block, w),
Timelock::Time(time) => write_varint(time, w),
}
}
/// Serialize the Timelock to a `Vec<u8>`.
pub fn serialize(&self) -> Vec<u8> {
let mut res = Vec::with_capacity(1);
self.write(&mut res).unwrap();
res
}
/// Read a Timelock.
pub fn read<R: Read>(r: &mut R) -> io::Result<Self> {
const TIMELOCK_BLOCK_THRESHOLD: usize = 500_000_000;
let raw = read_varint::<_, u64>(r)?;
Ok(if raw == 0 {
Timelock::None
} else if raw <
u64::try_from(TIMELOCK_BLOCK_THRESHOLD)
.expect("TIMELOCK_BLOCK_THRESHOLD didn't fit in a u64")
{
Timelock::Block(usize::try_from(raw).expect(
"timelock overflowed usize despite being less than a const representable with a usize",
))
} else {
Timelock::Time(raw)
})
}
}
impl PartialOrd for Timelock {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
match (self, other) {
(Timelock::None, Timelock::None) => Some(Ordering::Equal),
(Timelock::None, _) => Some(Ordering::Less),
(_, Timelock::None) => Some(Ordering::Greater),
(Timelock::Block(a), Timelock::Block(b)) => a.partial_cmp(b),
(Timelock::Time(a), Timelock::Time(b)) => a.partial_cmp(b),
_ => None,
}
}
}
/// The transaction prefix.
///
/// This is common to all transaction versions and contains most parts of the transaction needed to
/// handle it. It excludes any proofs.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct TransactionPrefix {
/// The timelock this transaction is additionally constrained by.
///
/// All transactions on the blockchain are subject to a 10-block lock. This adds a further
/// constraint.
pub additional_timelock: Timelock,
/// The inputs for this transaction.
pub inputs: Vec<Input>,
/// The outputs for this transaction.
pub outputs: Vec<Output>,
/// The additional data included within the transaction.
///
/// This is an arbitrary data field, yet is used by wallets for containing the data necessary to
/// scan the transaction.
pub extra: Vec<u8>,
}
impl TransactionPrefix {
/// Write a TransactionPrefix.
///
/// This is distinct from Monero in that it won't write any version.
fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
self.additional_timelock.write(w)?;
write_vec(Input::write, &self.inputs, w)?;
write_vec(Output::write, &self.outputs, w)?;
write_varint(&self.extra.len(), w)?;
w.write_all(&self.extra)
}
/// Read a TransactionPrefix.
///
/// This is distinct from Monero in that it won't read the version. The version must be passed
/// in.
pub fn read<R: Read>(r: &mut R, version: u64) -> io::Result<TransactionPrefix> {
let additional_timelock = Timelock::read(r)?;
let inputs = read_vec(|r| Input::read(r), r)?;
if inputs.is_empty() {
Err(io::Error::other("transaction had no inputs"))?;
}
let is_miner_tx = matches!(inputs[0], Input::Gen { .. });
let mut prefix = TransactionPrefix {
additional_timelock,
inputs,
outputs: read_vec(|r| Output::read((!is_miner_tx) && (version == 2), r), r)?,
extra: vec![],
};
prefix.extra = read_vec(read_byte, r)?;
Ok(prefix)
}
fn hash(&self, version: u64) -> [u8; 32] {
let mut buf = vec![];
write_varint(&version, &mut buf).unwrap();
self.write(&mut buf).unwrap();
keccak256(buf)
}
}
mod sealed {
use core::fmt::Debug;
use crate::ringct::*;
use super::*;
pub(crate) trait RingSignatures: Clone + PartialEq + Eq + Default + Debug {
fn signatures_to_write(&self) -> &[RingSignature];
fn read_signatures(inputs: &[Input], r: &mut impl Read) -> io::Result<Self>;
}
impl RingSignatures for Vec<RingSignature> {
fn signatures_to_write(&self) -> &[RingSignature] {
self
}
fn read_signatures(inputs: &[Input], r: &mut impl Read) -> io::Result<Self> {
let mut signatures = Vec::with_capacity(inputs.len());
for input in inputs {
match input {
Input::ToKey { key_offsets, .. } => {
signatures.push(RingSignature::read(key_offsets.len(), r)?)
}
_ => Err(io::Error::other("reading signatures for a transaction with non-ToKey inputs"))?,
}
}
Ok(signatures)
}
}
impl RingSignatures for () {
fn signatures_to_write(&self) -> &[RingSignature] {
&[]
}
fn read_signatures(_: &[Input], _: &mut impl Read) -> io::Result<Self> {
Ok(())
}
}
pub(crate) trait RctProofsTrait: Clone + PartialEq + Eq + Debug {
fn write(&self, w: &mut impl Write) -> io::Result<()>;
fn read(
ring_length: usize,
inputs: usize,
outputs: usize,
r: &mut impl Read,
) -> io::Result<Option<Self>>;
fn rct_type(&self) -> RctType;
fn base(&self) -> &RctBase;
}
impl RctProofsTrait for RctProofs {
fn write(&self, w: &mut impl Write) -> io::Result<()> {
self.write(w)
}
fn read(
ring_length: usize,
inputs: usize,
outputs: usize,
r: &mut impl Read,
) -> io::Result<Option<Self>> {
RctProofs::read(ring_length, inputs, outputs, r)
}
fn rct_type(&self) -> RctType {
self.rct_type()
}
fn base(&self) -> &RctBase {
&self.base
}
}
impl RctProofsTrait for PrunedRctProofs {
fn write(&self, w: &mut impl Write) -> io::Result<()> {
self.base.write(w, self.rct_type)
}
fn read(
_ring_length: usize,
inputs: usize,
outputs: usize,
r: &mut impl Read,
) -> io::Result<Option<Self>> {
Ok(RctBase::read(inputs, outputs, r)?.map(|(rct_type, base)| Self { rct_type, base }))
}
fn rct_type(&self) -> RctType {
self.rct_type
}
fn base(&self) -> &RctBase {
&self.base
}
}
pub(crate) trait PotentiallyPruned {
type RingSignatures: RingSignatures;
type RctProofs: RctProofsTrait;
}
/// A transaction which isn't pruned.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct NotPruned;
impl PotentiallyPruned for NotPruned {
type RingSignatures = Vec<RingSignature>;
type RctProofs = RctProofs;
}
/// A transaction which is pruned.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Pruned;
impl PotentiallyPruned for Pruned {
type RingSignatures = ();
type RctProofs = PrunedRctProofs;
}
}
pub use sealed::*;
/// A Monero transaction.
#[allow(private_bounds, private_interfaces, clippy::large_enum_variant)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Transaction<P: PotentiallyPruned = NotPruned> {
/// A version 1 transaction, used by the original Cryptonote codebase.
V1 {
/// The transaction's prefix.
prefix: TransactionPrefix,
/// The transaction's ring signatures.
signatures: P::RingSignatures,
},
/// A version 2 transaction, used by the RingCT protocol.
V2 {
/// The transaction's prefix.
prefix: TransactionPrefix,
/// The transaction's proofs.
proofs: Option<P::RctProofs>,
},
}
enum PrunableHash<'a> {
V1(&'a [RingSignature]),
V2([u8; 32]),
}
#[allow(private_bounds)]
impl<P: PotentiallyPruned> Transaction<P> {
/// Get the version of this transaction.
pub fn version(&self) -> u8 {
match self {
Transaction::V1 { .. } => 1,
Transaction::V2 { .. } => 2,
}
}
/// Get the TransactionPrefix of this transaction.
pub fn prefix(&self) -> &TransactionPrefix {
match self {
Transaction::V1 { prefix, .. } | Transaction::V2 { prefix, .. } => prefix,
}
}
/// Get a mutable reference to the TransactionPrefix of this transaction.
pub fn prefix_mut(&mut self) -> &mut TransactionPrefix {
match self {
Transaction::V1 { prefix, .. } | Transaction::V2 { prefix, .. } => prefix,
}
}
/// Write the Transaction.
///
/// Some writable transactions may not be readable if they're malformed, per Monero's consensus
/// rules.
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
write_varint(&self.version(), w)?;
match self {
Transaction::V1 { prefix, signatures } => {
prefix.write(w)?;
for ring_sig in signatures.signatures_to_write() {
ring_sig.write(w)?;
}
}
Transaction::V2 { prefix, proofs } => {
prefix.write(w)?;
match proofs {
None => w.write_all(&[0])?,
Some(proofs) => proofs.write(w)?,
}
}
}
Ok(())
}
/// Write the Transaction to a `Vec<u8>`.
pub fn serialize(&self) -> Vec<u8> {
let mut res = Vec::with_capacity(2048);
self.write(&mut res).unwrap();
res
}
/// Read a Transaction.
pub fn read<R: Read>(r: &mut R) -> io::Result<Self> {
let version = read_varint(r)?;
let prefix = TransactionPrefix::read(r, version)?;
if version == 1 {
let signatures = if (prefix.inputs.len() == 1) && matches!(prefix.inputs[0], Input::Gen(_)) {
Default::default()
} else {
P::RingSignatures::read_signatures(&prefix.inputs, r)?
};
Ok(Transaction::V1 { prefix, signatures })
} else if version == 2 {
let proofs = P::RctProofs::read(
prefix.inputs.first().map_or(0, |input| match input {
Input::Gen(_) => 0,
Input::ToKey { key_offsets, .. } => key_offsets.len(),
}),
prefix.inputs.len(),
prefix.outputs.len(),
r,
)?;
Ok(Transaction::V2 { prefix, proofs })
} else {
Err(io::Error::other("tried to deserialize unknown version"))
}
}
// The hash of the transaction.
#[allow(clippy::needless_pass_by_value)]
fn hash_with_prunable_hash(&self, prunable: PrunableHash<'_>) -> [u8; 32] {
match self {
Transaction::V1 { prefix, .. } => {
let mut buf = Vec::with_capacity(512);
// We don't use `self.write` as that may write the signatures (if this isn't pruned)
write_varint(&self.version(), &mut buf).unwrap();
prefix.write(&mut buf).unwrap();
// We explicitly write the signatures ourselves here
let PrunableHash::V1(signatures) = prunable else {
panic!("hashing v1 TX with non-v1 prunable data")
};
for signature in signatures {
signature.write(&mut buf).unwrap();
}
keccak256(buf)
}
Transaction::V2 { prefix, proofs } => {
let mut hashes = Vec::with_capacity(96);
hashes.extend(prefix.hash(2));
if let Some(proofs) = proofs {
let mut buf = Vec::with_capacity(512);
proofs.base().write(&mut buf, proofs.rct_type()).unwrap();
hashes.extend(keccak256(&buf));
} else {
// Serialization of RctBase::Null
hashes.extend(keccak256([0]));
}
let PrunableHash::V2(prunable_hash) = prunable else {
panic!("hashing v2 TX with non-v2 prunable data")
};
hashes.extend(prunable_hash);
keccak256(hashes)
}
}
}
}
impl Transaction<NotPruned> {
/// The hash of the transaction.
pub fn hash(&self) -> [u8; 32] {
match self {
Transaction::V1 { signatures, .. } => {
self.hash_with_prunable_hash(PrunableHash::V1(signatures))
}
Transaction::V2 { proofs, .. } => {
self.hash_with_prunable_hash(PrunableHash::V2(if let Some(proofs) = proofs {
let mut buf = Vec::with_capacity(1024);
proofs.prunable.write(&mut buf, proofs.rct_type()).unwrap();
keccak256(buf)
} else {
[0; 32]
}))
}
}
}
/// Calculate the hash of this transaction as needed for signing it.
///
/// This returns None if the transaction is without signatures.
pub fn signature_hash(&self) -> Option<[u8; 32]> {
Some(match self {
Transaction::V1 { prefix, .. } => {
if (prefix.inputs.len() == 1) && matches!(prefix.inputs[0], Input::Gen(_)) {
None?;
}
self.hash_with_prunable_hash(PrunableHash::V1(&[]))
}
Transaction::V2 { proofs, .. } => self.hash_with_prunable_hash({
let Some(proofs) = proofs else { None? };
let mut buf = Vec::with_capacity(1024);
proofs.prunable.signature_write(&mut buf).unwrap();
PrunableHash::V2(keccak256(buf))
}),
})
}
fn is_rct_bulletproof(&self) -> bool {
match self {
Transaction::V1 { .. } => false,
Transaction::V2 { proofs, .. } => {
let Some(proofs) = proofs else { return false };
proofs.rct_type().bulletproof()
}
}
}
fn is_rct_bulletproof_plus(&self) -> bool {
match self {
Transaction::V1 { .. } => false,
Transaction::V2 { proofs, .. } => {
let Some(proofs) = proofs else { return false };
proofs.rct_type().bulletproof_plus()
}
}
}
/// Calculate the transaction's weight.
pub fn weight(&self) -> usize {
let blob_size = self.serialize().len();
let bp = self.is_rct_bulletproof();
let bp_plus = self.is_rct_bulletproof_plus();
if !(bp || bp_plus) {
blob_size
} else {
blob_size +
Bulletproof::calculate_bp_clawback(
bp_plus,
match self {
Transaction::V1 { .. } => panic!("v1 transaction was BP(+)"),
Transaction::V2 { prefix, .. } => prefix.outputs.len(),
},
)
.0
}
}
}
impl From<Transaction<NotPruned>> for Transaction<Pruned> {
fn from(tx: Transaction<NotPruned>) -> Transaction<Pruned> {
match tx {
Transaction::V1 { prefix, .. } => Transaction::V1 { prefix, signatures: () },
Transaction::V2 { prefix, proofs } => Transaction::V2 {
prefix,
proofs: proofs
.map(|proofs| PrunedRctProofs { rct_type: proofs.rct_type(), base: proofs.base }),
},
}
}
}