serai/networks/ethereum/src/crypto.rs
Luke Parker 7d2d739042
Rename the coins folder to networks (#583)
* Rename the coins folder to networks

Ethereum isn't a coin. It's a network.

Resolves #357.

* More renames of coins -> networks in orchestration

* Correct paths in tests/

* cargo fmt
2024-07-18 15:16:45 -04:00

188 lines
5.6 KiB
Rust

use group::ff::PrimeField;
use k256::{
elliptic_curve::{ops::Reduce, point::AffineCoordinates, sec1::ToEncodedPoint},
ProjectivePoint, Scalar, U256 as KU256,
};
#[cfg(test)]
use k256::{elliptic_curve::point::DecompressPoint, AffinePoint};
use frost::{
algorithm::{Hram, SchnorrSignature},
curve::{Ciphersuite, Secp256k1},
};
use alloy_core::primitives::{Parity, Signature as AlloySignature};
use alloy_consensus::{SignableTransaction, Signed, TxLegacy};
use crate::abi::router::{Signature as AbiSignature};
pub(crate) fn keccak256(data: &[u8]) -> [u8; 32] {
alloy_core::primitives::keccak256(data).into()
}
pub(crate) fn hash_to_scalar(data: &[u8]) -> Scalar {
<Scalar as Reduce<KU256>>::reduce_bytes(&keccak256(data).into())
}
pub fn address(point: &ProjectivePoint) -> [u8; 20] {
let encoded_point = point.to_encoded_point(false);
// Last 20 bytes of the hash of the concatenated x and y coordinates
// We obtain the concatenated x and y coordinates via the uncompressed encoding of the point
keccak256(&encoded_point.as_ref()[1 .. 65])[12 ..].try_into().unwrap()
}
/// Deterministically sign a transaction.
///
/// This function panics if passed a transaction with a non-None chain ID.
pub fn deterministically_sign(tx: &TxLegacy) -> Signed<TxLegacy> {
assert!(
tx.chain_id.is_none(),
"chain ID was Some when deterministically signing a TX (causing a non-deterministic signer)"
);
let sig_hash = tx.signature_hash().0;
let mut r = hash_to_scalar(&[sig_hash.as_slice(), b"r"].concat());
let mut s = hash_to_scalar(&[sig_hash.as_slice(), b"s"].concat());
loop {
let r_bytes: [u8; 32] = r.to_repr().into();
let s_bytes: [u8; 32] = s.to_repr().into();
let v = Parity::NonEip155(false);
let signature =
AlloySignature::from_scalars_and_parity(r_bytes.into(), s_bytes.into(), v).unwrap();
let tx = tx.clone().into_signed(signature);
if tx.recover_signer().is_ok() {
return tx;
}
// Re-hash until valid
r = hash_to_scalar(r_bytes.as_ref());
s = hash_to_scalar(s_bytes.as_ref());
}
}
/// The public key for a Schnorr-signing account.
#[allow(non_snake_case)]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct PublicKey {
pub(crate) A: ProjectivePoint,
pub(crate) px: Scalar,
}
impl PublicKey {
/// Construct a new `PublicKey`.
///
/// This will return None if the provided point isn't eligible to be a public key (due to
/// bounds such as parity).
#[allow(non_snake_case)]
pub fn new(A: ProjectivePoint) -> Option<PublicKey> {
let affine = A.to_affine();
// Only allow even keys to save a word within Ethereum
let is_odd = bool::from(affine.y_is_odd());
if is_odd {
None?;
}
let x_coord = affine.x();
let x_coord_scalar = <Scalar as Reduce<KU256>>::reduce_bytes(&x_coord);
// Return None if a reduction would occur
// Reductions would be incredibly unlikely and shouldn't be an issue, yet it's one less
// headache/concern to have
// This does ban a trivial amoount of public keys
if x_coord_scalar.to_repr() != x_coord {
None?;
}
Some(PublicKey { A, px: x_coord_scalar })
}
pub fn point(&self) -> ProjectivePoint {
self.A
}
pub(crate) fn eth_repr(&self) -> [u8; 32] {
self.px.to_repr().into()
}
#[cfg(test)]
pub(crate) fn from_eth_repr(repr: [u8; 32]) -> Option<Self> {
#[allow(non_snake_case)]
let A = Option::<AffinePoint>::from(AffinePoint::decompress(&repr.into(), 0.into()))?.into();
Option::from(Scalar::from_repr(repr.into())).map(|px| PublicKey { A, px })
}
}
/// The HRAm to use for the Schnorr contract.
#[derive(Clone, Default)]
pub struct EthereumHram {}
impl Hram<Secp256k1> for EthereumHram {
#[allow(non_snake_case)]
fn hram(R: &ProjectivePoint, A: &ProjectivePoint, m: &[u8]) -> Scalar {
let x_coord = A.to_affine().x();
let mut data = address(R).to_vec();
data.extend(x_coord.as_slice());
data.extend(m);
<Scalar as Reduce<KU256>>::reduce_bytes(&keccak256(&data).into())
}
}
/// A signature for the Schnorr contract.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Signature {
pub(crate) c: Scalar,
pub(crate) s: Scalar,
}
impl Signature {
pub fn verify(&self, public_key: &PublicKey, message: &[u8]) -> bool {
#[allow(non_snake_case)]
let R = (Secp256k1::generator() * self.s) - (public_key.A * self.c);
EthereumHram::hram(&R, &public_key.A, message) == self.c
}
/// Construct a new `Signature`.
///
/// This will return None if the signature is invalid.
pub fn new(
public_key: &PublicKey,
message: &[u8],
signature: SchnorrSignature<Secp256k1>,
) -> Option<Signature> {
let c = EthereumHram::hram(&signature.R, &public_key.A, message);
if !signature.verify(public_key.A, c) {
None?;
}
let res = Signature { c, s: signature.s };
assert!(res.verify(public_key, message));
Some(res)
}
pub fn c(&self) -> Scalar {
self.c
}
pub fn s(&self) -> Scalar {
self.s
}
pub fn to_bytes(&self) -> [u8; 64] {
let mut res = [0; 64];
res[.. 32].copy_from_slice(self.c.to_repr().as_ref());
res[32 ..].copy_from_slice(self.s.to_repr().as_ref());
res
}
pub fn from_bytes(bytes: [u8; 64]) -> std::io::Result<Self> {
let mut reader = bytes.as_slice();
let c = Secp256k1::read_F(&mut reader)?;
let s = Secp256k1::read_F(&mut reader)?;
Ok(Signature { c, s })
}
}
impl From<&Signature> for AbiSignature {
fn from(sig: &Signature) -> AbiSignature {
let c: [u8; 32] = sig.c.to_repr().into();
let s: [u8; 32] = sig.s.to_repr().into();
AbiSignature { c: c.into(), s: s.into() }
}
}