serai/networks/monero/src/ring_signatures.rs
Luke Parker 7d2d739042
Rename the coins folder to networks (#583)
* Rename the coins folder to networks

Ethereum isn't a coin. It's a network.

Resolves #357.

* More renames of coins -> networks in orchestration

* Correct paths in tests/

* cargo fmt
2024-07-18 15:16:45 -04:00

101 lines
2.8 KiB
Rust

use std_shims::{
io::{self, *},
vec::Vec,
};
use zeroize::Zeroize;
use curve25519_dalek::{EdwardsPoint, Scalar};
use crate::{io::*, generators::hash_to_point, primitives::keccak256_to_scalar};
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub(crate) struct Signature {
#[cfg(test)]
pub(crate) c: Scalar,
#[cfg(test)]
pub(crate) s: Scalar,
#[cfg(not(test))]
c: Scalar,
#[cfg(not(test))]
s: Scalar,
}
impl Signature {
fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
write_scalar(&self.c, w)?;
write_scalar(&self.s, w)?;
Ok(())
}
fn read<R: Read>(r: &mut R) -> io::Result<Signature> {
Ok(Signature { c: read_scalar(r)?, s: read_scalar(r)? })
}
}
/// A ring signature.
///
/// This was used by the original Cryptonote transaction protocol and was deprecated with RingCT.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct RingSignature {
#[cfg(test)]
pub(crate) sigs: Vec<Signature>,
#[cfg(not(test))]
sigs: Vec<Signature>,
}
impl RingSignature {
/// Write the RingSignature.
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
for sig in &self.sigs {
sig.write(w)?;
}
Ok(())
}
/// Read a RingSignature.
pub fn read<R: Read>(members: usize, r: &mut R) -> io::Result<RingSignature> {
Ok(RingSignature { sigs: read_raw_vec(Signature::read, members, r)? })
}
/// Verify the ring signature.
pub fn verify(&self, msg: &[u8; 32], ring: &[EdwardsPoint], key_image: &EdwardsPoint) -> bool {
if ring.len() != self.sigs.len() {
return false;
}
let mut buf = Vec::with_capacity(32 + (2 * 32 * ring.len()));
buf.extend_from_slice(msg);
let mut sum = Scalar::ZERO;
for (ring_member, sig) in ring.iter().zip(&self.sigs) {
/*
The traditional Schnorr signature is:
r = sample()
c = H(r G || m)
s = r - c x
Verified as:
s G + c A == R
Each ring member here performs a dual-Schnorr signature for:
s G + c A
s HtP(A) + c K
Where the transcript is pushed both these values, r G, r HtP(A) for the real spend.
This also serves as a DLEq proof between the key and the key image.
Checking sum(c) == H(transcript) acts a disjunction, where any one of the `c`s can be
modified to cause the intended sum, if and only if a corresponding `s` value is known.
*/
#[allow(non_snake_case)]
let Li = EdwardsPoint::vartime_double_scalar_mul_basepoint(&sig.c, ring_member, &sig.s);
buf.extend_from_slice(Li.compress().as_bytes());
#[allow(non_snake_case)]
let Ri = (sig.s * hash_to_point(ring_member.compress().to_bytes())) + (sig.c * key_image);
buf.extend_from_slice(Ri.compress().as_bytes());
sum += sig.c;
}
sum == keccak256_to_scalar(buf)
}
}