serai/crypto/ff-group-tests/src/field.rs
Luke Parker 065d314e2a
Further expand clippy workspace lints
Achieves a notable amount of reduced async and clones.
2023-12-17 00:04:49 -05:00

225 lines
7.6 KiB
Rust

use rand_core::RngCore;
use subtle::Choice;
use group::ff::Field;
/// Perform basic tests on equality.
pub fn test_eq<F: Field>() {
let zero = F::ZERO;
let one = F::ONE;
assert!(zero != one, "0 == 1");
assert!(!bool::from(zero.ct_eq(&one)), "0 ct_eq 1");
assert_eq!(zero, F::ZERO, "0 != 0");
assert!(bool::from(zero.ct_eq(&F::ZERO)), "0 !ct_eq 0");
assert_eq!(one, F::ONE, "1 != 1");
assert!(bool::from(one.ct_eq(&F::ONE)), "1 !ct_eq 1");
}
/// Verify conditional selection works. Doesn't verify it's actually constant time.
pub fn test_conditional_select<F: Field>() {
let zero = F::ZERO;
let one = F::ONE;
assert_eq!(F::conditional_select(&zero, &one, 0.into()), zero, "couldn't select when false");
assert_eq!(F::conditional_select(&zero, &one, 1.into()), one, "couldn't select when true");
}
/// Perform basic tests on addition.
pub fn test_add<F: Field>() {
assert_eq!(F::ZERO + F::ZERO, F::ZERO, "0 + 0 != 0");
assert_eq!(F::ZERO + F::ONE, F::ONE, "0 + 1 != 1");
assert_eq!(F::ONE + F::ZERO, F::ONE, "1 + 0 != 1");
// Only PrimeField offers From<u64>
// Accordingly, we assume either double or addition is correct
// They either have to be matchingly correct or matchingly incorrect, yet we can't
// reliably determine that here
assert_eq!(F::ONE + F::ONE, F::ONE.double(), "1 + 1 != 2");
}
/// Perform basic tests on sum.
pub fn test_sum<F: Field>() {
assert_eq!((&[] as &[F]).iter().sum::<F>(), F::ZERO, "[].sum() != 0");
assert_eq!([F::ZERO].iter().sum::<F>(), F::ZERO, "[0].sum() != 0");
assert_eq!([F::ONE].iter().sum::<F>(), F::ONE, "[1].sum() != 1");
let two = F::ONE + F::ONE;
assert_eq!([F::ONE, F::ONE].iter().sum::<F>(), two, "[1, 1].sum() != 2");
assert_eq!([two, F::ONE].iter().sum::<F>(), two + F::ONE, "[2, 1].sum() != 3");
assert_eq!([two, F::ZERO, F::ONE].iter().sum::<F>(), two + F::ONE, "[2, 0, 1].sum() != 3");
}
/// Perform basic tests on subtraction.
pub fn test_sub<F: Field>() {
#[allow(clippy::eq_op)]
let expr = F::ZERO - F::ZERO;
assert_eq!(expr, F::ZERO, "0 - 0 != 0");
assert_eq!(F::ONE - F::ZERO, F::ONE, "1 - 0 != 1");
#[allow(clippy::eq_op)]
let expr = F::ONE - F::ONE;
assert_eq!(expr, F::ZERO, "1 - 1 != 0");
}
/// Perform basic tests on negation.
pub fn test_neg<F: Field>() {
assert_eq!(-F::ZERO, F::ZERO, "-0 != 0");
assert_eq!(-(-F::ONE), F::ONE, "-(-1) != 1");
assert_eq!(F::ONE + (-F::ONE), F::ZERO, "1 + -1 != 0");
assert_eq!(F::ONE - (-F::ONE), F::ONE.double(), "1 - -1 != 2");
}
/// Perform basic tests on multiplication.
pub fn test_mul<F: Field>() {
assert_eq!(F::ZERO * F::ZERO, F::ZERO, "0 * 0 != 0");
assert_eq!(F::ONE * F::ZERO, F::ZERO, "1 * 0 != 0");
assert_eq!(F::ONE * F::ONE, F::ONE, "1 * 1 != 1");
let two = F::ONE.double();
assert_eq!(two * (two + F::ONE), two + two + two, "2 * 3 != 6");
}
/// Perform basic tests on product.
pub fn test_product<F: Field>() {
assert_eq!((&[] as &[F]).iter().product::<F>(), F::ONE, "[].product() != 1");
assert_eq!([F::ZERO].iter().product::<F>(), F::ZERO, "[0].product() != 0");
assert_eq!([F::ONE].iter().product::<F>(), F::ONE, "[1].product() != 1");
assert_eq!([F::ONE, F::ONE].iter().product::<F>(), F::ONE, "[1, 1].product() != 2");
let two = F::ONE + F::ONE;
assert_eq!([two, F::ONE].iter().product::<F>(), two, "[2, 1].product() != 2");
assert_eq!([two, two].iter().product::<F>(), two + two, "[2, 2].product() != 4");
assert_eq!([two, two, F::ONE].iter().product::<F>(), two + two, "[2, 2, 1].product() != 4");
assert_eq!([two, F::ZERO, F::ONE].iter().product::<F>(), F::ZERO, "[2, 0, 1].product() != 0");
}
/// Perform basic tests on the square function.
pub fn test_square<F: Field>() {
assert_eq!(F::ZERO.square(), F::ZERO, "0^2 != 0");
assert_eq!(F::ONE.square(), F::ONE, "1^2 != 1");
let two = F::ONE.double();
assert_eq!(two.square(), two + two, "2^2 != 4");
let three = two + F::ONE;
assert_eq!(three.square(), three * three, "3^2 != 9");
}
/// Perform basic tests on the invert function.
pub fn test_invert<F: Field>() {
assert!(bool::from(F::ZERO.invert().is_none()), "0.invert() is some");
assert_eq!(F::ONE.invert().unwrap(), F::ONE, "1.invert() != 1");
let two = F::ONE.double();
let three = two + F::ONE;
assert_eq!(two * three.invert().unwrap() * three, two, "2 * 3.invert() * 3 != 2");
}
/// Perform basic tests on the sqrt functions.
pub fn test_sqrt<F: Field>() {
assert_eq!(F::ZERO.sqrt().unwrap(), F::ZERO, "sqrt(0) != 0");
assert!(
(F::ONE.sqrt().unwrap() == F::ONE) || (F::ONE.sqrt().unwrap() == -F::ONE),
"sqrt(1) != 1"
);
let mut has_root = F::ONE.double();
while bool::from(has_root.sqrt().is_none()) {
has_root += F::ONE;
}
// The following code doesn't assume which root is returned, yet it does assume a consistent root
// is returned
let root = has_root.sqrt().unwrap();
assert_eq!(root * root, has_root, "sqrt(x)^2 != x");
let check = |value: (_, _), expected: (_, F), msg| {
assert_eq!(bool::from(value.0), bool::from(expected.0), "{msg}");
assert!((value.1 == expected.1) || (value.1 == -expected.1), "{msg}");
};
check(
F::sqrt_ratio(&has_root, &F::ONE),
(Choice::from(1), root),
"sqrt_ratio didn't return the root with a divisor of 1",
);
check(
F::sqrt_ratio(&(has_root * F::ONE.double()), &F::ONE.double()),
(Choice::from(1), root),
"sqrt_ratio didn't return the root with a divisor of 2",
);
check(F::sqrt_alt(&F::ZERO), F::sqrt_ratio(&F::ZERO, &F::ONE), "sqrt_alt(0) != sqrt_ratio(0, 1)");
check(F::sqrt_alt(&F::ONE), F::sqrt_ratio(&F::ONE, &F::ONE), "sqrt_alt(1) != sqrt_ratio(1, 1)");
check(F::sqrt_alt(&has_root), (Choice::from(1), root), "sqrt_alt(square) != (1, root)");
// Check 0 divisors are properly implemented
check(
F::sqrt_ratio(&has_root, &F::ZERO),
(Choice::from(0), F::ZERO),
"sqrt_ratio didn't return the right value for a 0 divisor",
);
// Check non-squares are appropriately marked
let mut no_root = has_root + F::ONE;
while bool::from(no_root.sqrt().is_some()) {
no_root += F::ONE;
}
assert!(
!bool::from(F::sqrt_ratio(&no_root, &F::ONE).0),
"sqrt_ratio claimed non-square had root"
);
assert!(!bool::from(F::sqrt_alt(&no_root).0), "sqrt_alt claimed non-square had root");
}
/// Perform basic tests on the is_zero functions.
pub fn test_is_zero<F: Field>() {
assert!(bool::from(F::ZERO.is_zero()), "0 is not 0");
assert!(F::ZERO.is_zero_vartime(), "0 is not 0");
}
/// Perform basic tests on the cube function.
pub fn test_cube<F: Field>() {
assert_eq!(F::ZERO.cube(), F::ZERO, "0^3 != 0");
assert_eq!(F::ONE.cube(), F::ONE, "1^3 != 1");
let two = F::ONE.double();
assert_eq!(two.cube(), two * two * two, "2^3 != 8");
}
/// Test random.
pub fn test_random<R: RngCore, F: Field>(rng: &mut R) {
let a = F::random(&mut *rng);
// Run up to 128 times so small fields, which may occasionally return the same element twice,
// are statistically unlikely to fail
// Field of order 1 will always fail this test due to lack of distinct elements to sample
// from
let mut pass = false;
for _ in 0 .. 128 {
let b = F::random(&mut *rng);
// This test passes if a distinct element is returned at least once
if b != a {
pass = true;
}
}
assert!(pass, "random always returned the same value");
}
/// Run all tests on fields implementing Field.
pub fn test_field<R: RngCore, F: Field>(rng: &mut R) {
test_eq::<F>();
test_conditional_select::<F>();
test_add::<F>();
test_sum::<F>();
test_sub::<F>();
test_neg::<F>();
test_mul::<F>();
test_product::<F>();
test_square::<F>();
test_invert::<F>();
test_sqrt::<F>();
test_is_zero::<F>();
test_cube::<F>();
test_random::<R, F>(rng);
}