serai/crypto/frost/src/nonce.rs
Luke Parker 25f1549c6c
Move verify_share to return batch-verifiable statements
While the previous construction achieved n/2 average detection,
this will run in log2(n). Unfortunately, the need to keep entropy
around (or take in an RNG here) remains.
2022-12-13 20:31:00 -05:00

280 lines
9.8 KiB
Rust

// FROST defines its nonce as sum(Di, Ei * bi)
// Monero needs not just the nonce over G however, yet also over H
// Then there is a signature (a modified Chaum Pedersen proof) using multiple nonces at once
//
// Accordingly, in order for this library to be robust, it supports generating an arbitrary amount
// of nonces, each against an arbitrary list of basepoints
//
// Each nonce remains of the form (d, e) and made into a proper nonce with d + (e * b)
// When multiple D, E pairs are provided, a DLEq proof is also provided to confirm their integrity
use core::ops::Deref;
use std::{
io::{self, Read, Write},
collections::HashMap,
};
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, Zeroizing};
use transcript::Transcript;
use group::{ff::PrimeField, Group, GroupEncoding};
use multiexp::multiexp_vartime;
use dleq::DLEqProof;
use crate::curve::Curve;
// Every participant proves for their commitments at the start of the protocol
// These proofs are verified sequentially, requiring independent transcripts
// In order to make these transcripts more robust, the FROST transcript (at time of preprocess) is
// challenged in order to create a commitment to it, carried in each independent transcript
// (effectively forking the original transcript)
//
// For FROST, as defined by the IETF, this will do nothing (and this transcript will never even be
// constructed). For higher level protocols, the transcript may have contextual info these proofs
// will then be bound to
fn dleq_transcript<T: Transcript>(context: &[u8]) -> T {
let mut transcript = T::new(b"FROST_commitments");
transcript.append_message(b"context", context);
transcript
}
// Each nonce is actually a pair of random scalars, notated as d, e under the FROST paper
// This is considered a single nonce as r = d + be
#[derive(Clone, Zeroize)]
pub(crate) struct Nonce<C: Curve>(pub(crate) [Zeroizing<C::F>; 2]);
// Commitments to a specific generator for this nonce
#[derive(Copy, Clone, PartialEq, Eq)]
pub(crate) struct GeneratorCommitments<C: Curve>(pub(crate) [C::G; 2]);
impl<C: Curve> GeneratorCommitments<C> {
fn read<R: Read>(reader: &mut R) -> io::Result<GeneratorCommitments<C>> {
Ok(GeneratorCommitments([<C as Curve>::read_G(reader)?, <C as Curve>::read_G(reader)?]))
}
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.0[0].to_bytes().as_ref())?;
writer.write_all(self.0[1].to_bytes().as_ref())
}
}
// A single nonce's commitments and relevant proofs
#[derive(Clone, PartialEq, Eq)]
pub(crate) struct NonceCommitments<C: Curve> {
// Called generators as these commitments are indexed by generator
pub(crate) generators: Vec<GeneratorCommitments<C>>,
// DLEq Proofs proving that these commitments are generated using the same scalar pair
// This could be further optimized with a multi-nonce proof, offering just one proof for all
// nonces. See https://github.com/serai-dex/serai/issues/38
// TODO
pub(crate) dleqs: Option<[DLEqProof<C::G>; 2]>,
}
impl<C: Curve> NonceCommitments<C> {
pub(crate) fn new<R: RngCore + CryptoRng, T: Transcript>(
rng: &mut R,
secret_share: &Zeroizing<C::F>,
generators: &[C::G],
context: &[u8],
) -> (Nonce<C>, NonceCommitments<C>) {
let nonce = Nonce::<C>([
C::random_nonce(secret_share, &mut *rng),
C::random_nonce(secret_share, &mut *rng),
]);
let mut commitments = Vec::with_capacity(generators.len());
for generator in generators {
commitments.push(GeneratorCommitments([
*generator * nonce.0[0].deref(),
*generator * nonce.0[1].deref(),
]));
}
let mut dleqs = None;
if generators.len() >= 2 {
let mut dleq = |nonce| {
// Uses an independent transcript as each signer must prove this with their commitments,
// yet they're validated while processing everyone's data sequentially, by the global order
// This avoids needing to clone and fork the transcript around
DLEqProof::prove(&mut *rng, &mut dleq_transcript::<T>(context), generators, nonce)
};
dleqs = Some([dleq(&nonce.0[0]), dleq(&nonce.0[1])]);
}
(nonce, NonceCommitments { generators: commitments, dleqs })
}
fn read<R: Read, T: Transcript>(
reader: &mut R,
generators: &[C::G],
context: &[u8],
) -> io::Result<NonceCommitments<C>> {
let commitments: Vec<GeneratorCommitments<C>> = (0 .. generators.len())
.map(|_| GeneratorCommitments::read(reader))
.collect::<Result<_, _>>()?;
let mut dleqs = None;
if generators.len() >= 2 {
let mut verify = |i| -> io::Result<_> {
let dleq = DLEqProof::deserialize(reader)?;
dleq
.verify(
&mut dleq_transcript::<T>(context),
generators,
&commitments.iter().map(|commitments| commitments.0[i]).collect::<Vec<_>>(),
)
.map_err(|_| io::Error::new(io::ErrorKind::Other, "invalid DLEq proof"))?;
Ok(dleq)
};
dleqs = Some([verify(0)?, verify(1)?]);
}
Ok(NonceCommitments { generators: commitments, dleqs })
}
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
for generator in &self.generators {
generator.write(writer)?;
}
if let Some(dleqs) = &self.dleqs {
dleqs[0].serialize(writer)?;
dleqs[1].serialize(writer)?;
}
Ok(())
}
}
#[derive(Clone, PartialEq, Eq)]
pub(crate) struct Commitments<C: Curve> {
// Called nonces as these commitments are indexed by nonce
pub(crate) nonces: Vec<NonceCommitments<C>>,
}
impl<C: Curve> Commitments<C> {
pub(crate) fn new<R: RngCore + CryptoRng, T: Transcript>(
rng: &mut R,
secret_share: &Zeroizing<C::F>,
planned_nonces: &[Vec<C::G>],
context: &[u8],
) -> (Vec<Nonce<C>>, Commitments<C>) {
let mut nonces = vec![];
let mut commitments = vec![];
for generators in planned_nonces {
let (nonce, these_commitments) =
NonceCommitments::new::<_, T>(&mut *rng, secret_share, generators, context);
nonces.push(nonce);
commitments.push(these_commitments);
}
(nonces, Commitments { nonces: commitments })
}
pub(crate) fn transcript<T: Transcript>(&self, t: &mut T) {
for nonce in &self.nonces {
for commitments in &nonce.generators {
t.append_message(b"commitment_D", commitments.0[0].to_bytes());
t.append_message(b"commitment_E", commitments.0[1].to_bytes());
}
// Transcripting the DLEqs implicitly transcripts the exact generators used for this nonce
// This means it shouldn't be possible for variadic generators to cause conflicts as they're
// committed to as their entire series per-nonce, not as isolates
if let Some(dleqs) = &nonce.dleqs {
let mut transcript_dleq = |label, dleq: &DLEqProof<C::G>| {
let mut buf = vec![];
dleq.serialize(&mut buf).unwrap();
t.append_message(label, &buf);
};
transcript_dleq(b"dleq_D", &dleqs[0]);
transcript_dleq(b"dleq_E", &dleqs[1]);
}
}
}
pub(crate) fn read<R: Read, T: Transcript>(
reader: &mut R,
nonces: &[Vec<C::G>],
context: &[u8],
) -> io::Result<Self> {
Ok(Commitments {
nonces: (0 .. nonces.len())
.map(|i| NonceCommitments::read::<_, T>(reader, &nonces[i], context))
.collect::<Result<_, _>>()?,
})
}
pub(crate) fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
for nonce in &self.nonces {
nonce.write(writer)?;
}
Ok(())
}
}
pub(crate) struct IndividualBinding<C: Curve> {
commitments: Commitments<C>,
binding_factors: Option<Vec<C::F>>,
}
pub(crate) struct BindingFactor<C: Curve>(pub(crate) HashMap<u16, IndividualBinding<C>>);
impl<C: Curve> BindingFactor<C> {
pub(crate) fn insert(&mut self, i: u16, commitments: Commitments<C>) {
self.0.insert(i, IndividualBinding { commitments, binding_factors: None });
}
pub(crate) fn calculate_binding_factors<T: Clone + Transcript>(&mut self, transcript: &mut T) {
for (l, binding) in self.0.iter_mut() {
let mut transcript = transcript.clone();
transcript.append_message(b"participant", C::F::from(u64::from(*l)).to_repr());
// It *should* be perfectly fine to reuse a binding factor for multiple nonces
// This generates a binding factor per nonce just to ensure it never comes up as a question
binding.binding_factors = Some(
(0 .. binding.commitments.nonces.len())
.map(|_| C::hash_binding_factor(transcript.challenge(b"rho").as_ref()))
.collect(),
);
}
}
pub(crate) fn binding_factors(&self, i: u16) -> &[C::F] {
self.0[&i].binding_factors.as_ref().unwrap()
}
// Get the bound nonces for a specific party
pub(crate) fn bound(&self, l: u16) -> Vec<Vec<C::G>> {
let mut res = vec![];
for (i, (nonce, rho)) in
self.0[&l].commitments.nonces.iter().zip(self.binding_factors(l).iter()).enumerate()
{
res.push(vec![]);
for generator in &nonce.generators {
res[i].push(generator.0[0] + (generator.0[1] * rho));
}
}
res
}
// Get the nonces for this signing session
pub(crate) fn nonces(&self, planned_nonces: &[Vec<C::G>]) -> Vec<Vec<C::G>> {
let mut nonces = Vec::with_capacity(planned_nonces.len());
for n in 0 .. planned_nonces.len() {
nonces.push(Vec::with_capacity(planned_nonces[n].len()));
for g in 0 .. planned_nonces[n].len() {
#[allow(non_snake_case)]
let mut D = C::G::identity();
let mut statements = Vec::with_capacity(self.0.len());
#[allow(non_snake_case)]
for IndividualBinding { commitments, binding_factors } in self.0.values() {
D += commitments.nonces[n].generators[g].0[0];
statements
.push((binding_factors.as_ref().unwrap()[n], commitments.nonces[n].generators[g].0[1]));
}
nonces[n].push(D + multiexp_vartime(&statements));
}
}
nonces
}
}