serai/coins/monero/src/ringct/bulletproofs/plus.rs
Luke Parker 93b1656f86
Meaningful changes from aggressive-clippy
I do want to enable a few specific lints, yet aggressive-clippy as a whole
isn't worthwhile.
2023-07-08 11:29:07 -04:00

310 lines
8.9 KiB
Rust

use std_shims::{vec::Vec, sync::OnceLock};
use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint};
use group::ff::Field;
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
use multiexp::BatchVerifier;
use crate::{
Commitment, hash,
ringct::{hash_to_point::raw_hash_to_point, bulletproofs::core::*},
};
include!(concat!(env!("OUT_DIR"), "/generators_plus.rs"));
static TRANSCRIPT_CELL: OnceLock<[u8; 32]> = OnceLock::new();
pub(crate) fn TRANSCRIPT() -> [u8; 32] {
*TRANSCRIPT_CELL.get_or_init(|| {
EdwardsPoint(raw_hash_to_point(hash(b"bulletproof_plus_transcript"))).compress().to_bytes()
})
}
// TRANSCRIPT isn't a Scalar, so we need this alternative for the first hash
fn hash_plus<C: IntoIterator<Item = DalekPoint>>(commitments: C) -> (Scalar, Vec<EdwardsPoint>) {
let (cache, commitments) = hash_commitments(commitments);
(hash_to_scalar(&[TRANSCRIPT().as_ref(), &cache.to_bytes()].concat()), commitments)
}
// d[j*N+i] = z**(2*(j+1)) * 2**i
fn d(z: Scalar, M: usize, MN: usize) -> (ScalarVector, ScalarVector) {
let zpow = ScalarVector::even_powers(z, 2 * M);
let mut d = vec![Scalar::ZERO; MN];
for j in 0 .. M {
for i in 0 .. N {
d[(j * N) + i] = zpow[j] * TWO_N()[i];
}
}
(zpow, ScalarVector(d))
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct PlusStruct {
pub(crate) A: DalekPoint,
pub(crate) A1: DalekPoint,
pub(crate) B: DalekPoint,
pub(crate) r1: DalekScalar,
pub(crate) s1: DalekScalar,
pub(crate) d1: DalekScalar,
pub(crate) L: Vec<DalekPoint>,
pub(crate) R: Vec<DalekPoint>,
}
impl PlusStruct {
pub(crate) fn prove<R: RngCore + CryptoRng>(
rng: &mut R,
commitments: &[Commitment],
) -> PlusStruct {
let generators = GENERATORS();
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let commitments_points = commitments.iter().map(Commitment::calculate).collect::<Vec<_>>();
let (mut cache, _) = hash_plus(commitments_points.clone());
let (mut alpha1, A) = alpha_rho(&mut *rng, generators, &aL, &aR);
let y = hash_cache(&mut cache, &[A.compress().to_bytes()]);
let mut cache = hash_to_scalar(&y.to_bytes());
let z = cache;
let (zpow, d) = d(z, M, MN);
let aL1 = aL - z;
let ypow = ScalarVector::powers(y, MN + 2);
let mut y_for_d = ScalarVector(ypow.0[1 ..= MN].to_vec());
y_for_d.0.reverse();
let aR1 = (aR + z) + (y_for_d * d);
for (j, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
alpha1 += zpow[j] * ypow[MN + 1] * gamma;
}
let mut a = aL1;
let mut b = aR1;
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut G_proof = generators.G[.. a.len()].to_vec();
let mut H_proof = generators.H[.. a.len()].to_vec();
let mut L = Vec::with_capacity(logMN);
let mut R = Vec::with_capacity(logMN);
while a.len() != 1 {
let (aL, aR) = a.split();
let (bL, bR) = b.split();
let cL = weighted_inner_product(&aL, &bR, y);
let cR = weighted_inner_product(&(&aR * ypow[aR.len()]), &bL, y);
let (mut dL, mut dR) = (Scalar::random(&mut *rng), Scalar::random(&mut *rng));
let (G_L, G_R) = G_proof.split_at(aL.len());
let (H_L, H_R) = H_proof.split_at(aL.len());
let mut L_i = LR_statements(&(&aL * yinvpow[aL.len()]), G_R, &bR, H_L, cL, H());
L_i.push((dL, G));
let L_i = prove_multiexp(&L_i);
L.push(L_i);
let mut R_i = LR_statements(&(&aR * ypow[aR.len()]), G_L, &bL, H_R, cR, H());
R_i.push((dR, G));
let R_i = prove_multiexp(&R_i);
R.push(R_i);
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
let winv = w.invert().unwrap();
G_proof = hadamard_fold(G_L, G_R, winv, w * yinvpow[aL.len()]);
H_proof = hadamard_fold(H_L, H_R, w, winv);
a = (&aL * w) + (aR * (winv * ypow[aL.len()]));
b = (bL * winv) + (bR * w);
alpha1 += (dL * (w * w)) + (dR * (winv * winv));
dL.zeroize();
dR.zeroize();
}
let mut r = Scalar::random(&mut *rng);
let mut s = Scalar::random(&mut *rng);
let mut d = Scalar::random(&mut *rng);
let mut eta = Scalar::random(&mut *rng);
let A1 = prove_multiexp(&[
(r, G_proof[0]),
(s, H_proof[0]),
(d, G),
((r * y * b[0]) + (s * y * a[0]), H()),
]);
let B = prove_multiexp(&[(r * y * s, H()), (eta, G)]);
let e = hash_cache(&mut cache, &[A1.compress().to_bytes(), B.compress().to_bytes()]);
let r1 = (a[0] * e) + r;
r.zeroize();
let s1 = (b[0] * e) + s;
s.zeroize();
let d1 = ((d * e) + eta) + (alpha1 * (e * e));
d.zeroize();
eta.zeroize();
alpha1.zeroize();
let res = PlusStruct {
A: *A,
A1: *A1,
B: *B,
r1: *r1,
s1: *s1,
d1: *d1,
L: L.drain(..).map(|L| *L).collect(),
R: R.drain(..).map(|R| *R).collect(),
};
debug_assert!(res.verify(rng, &commitments_points));
res
}
#[must_use]
fn verify_core<ID: Copy + Zeroize, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
// Verify commitments are valid
if commitments.is_empty() || (commitments.len() > MAX_M) {
return false;
}
// Verify L and R are properly sized
if self.L.len() != self.R.len() {
return false;
}
let (logMN, M, MN) = MN(commitments.len());
if self.L.len() != logMN {
return false;
}
// Rebuild all challenges
let (mut cache, commitments) = hash_plus(commitments.iter().copied());
let y = hash_cache(&mut cache, &[self.A.compress().to_bytes()]);
let yinv = y.invert().unwrap();
let z = hash_to_scalar(&y.to_bytes());
cache = z;
let mut w = Vec::with_capacity(logMN);
let mut winv = Vec::with_capacity(logMN);
for (L, R) in self.L.iter().zip(&self.R) {
w.push(hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()]));
winv.push(cache.invert().unwrap());
}
let e = hash_cache(&mut cache, &[self.A1.compress().to_bytes(), self.B.compress().to_bytes()]);
// Convert the proof from * INV_EIGHT to its actual form
let normalize = |point: &DalekPoint| EdwardsPoint(point.mul_by_cofactor());
let L = self.L.iter().map(normalize).collect::<Vec<_>>();
let R = self.R.iter().map(normalize).collect::<Vec<_>>();
let A = normalize(&self.A);
let A1 = normalize(&self.A1);
let B = normalize(&self.B);
// Verify it
let mut proof = Vec::with_capacity(logMN + 5 + (2 * (MN + logMN)));
let mut yMN = y;
for _ in 0 .. logMN {
yMN *= yMN;
}
let yMNy = yMN * y;
let (zpow, d) = d(z, M, MN);
let zsq = zpow[0];
let esq = e * e;
let minus_esq = -esq;
let commitment_weight = minus_esq * yMNy;
for (i, commitment) in commitments.iter().map(EdwardsPoint::mul_by_cofactor).enumerate() {
proof.push((commitment_weight * zpow[i], commitment));
}
// Invert B, instead of the Scalar, as the latter is only 2x as expensive yet enables reduction
// to a single addition under vartime for the first BP verified in the batch, which is expected
// to be much more significant
proof.push((Scalar::ONE, -B));
proof.push((-e, A1));
proof.push((minus_esq, A));
proof.push((Scalar(self.d1), G));
let d_sum = zpow.sum() * Scalar::from(u64::MAX);
let y_sum = weighted_powers(y, MN).sum();
proof.push((
Scalar(self.r1 * y.0 * self.s1) + (esq * ((yMNy * z * d_sum) + ((zsq - z) * y_sum))),
H(),
));
let w_cache = challenge_products(&w, &winv);
let mut e_r1_y = e * Scalar(self.r1);
let e_s1 = e * Scalar(self.s1);
let esq_z = esq * z;
let minus_esq_z = -esq_z;
let mut minus_esq_y = minus_esq * yMN;
let generators = GENERATORS();
for i in 0 .. MN {
proof.push((e_r1_y * w_cache[i] + esq_z, generators.G[i]));
proof.push((
(e_s1 * w_cache[(!i) & (MN - 1)]) + minus_esq_z + (minus_esq_y * d[i]),
generators.H[i],
));
e_r1_y *= yinv;
minus_esq_y *= yinv;
}
for i in 0 .. logMN {
proof.push((minus_esq * w[i] * w[i], L[i]));
proof.push((minus_esq * winv[i] * winv[i], R[i]));
}
verifier.queue(rng, id, proof);
true
}
#[must_use]
pub(crate) fn verify<R: RngCore + CryptoRng>(
&self,
rng: &mut R,
commitments: &[DalekPoint],
) -> bool {
let mut verifier = BatchVerifier::new(1);
if self.verify_core(rng, &mut verifier, (), commitments) {
verifier.verify_vartime()
} else {
false
}
}
#[must_use]
pub(crate) fn batch_verify<ID: Copy + Zeroize, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
self.verify_core(rng, verifier, id, commitments)
}
}