serai/crypto/ff-group-tests/src/prime_field.rs
Luke Parker 79aff5d4c8
ff 0.13 (#269)
* Partial move to ff 0.13

It turns out the newly released k256 0.12 isn't on ff 0.13, preventing further
work at this time.

* Update all crates to work on ff 0.13

The provided curves still need to be expanded to fit the new API.

* Finish adding dalek-ff-group ff 0.13 constants

* Correct FieldElement::product definition

Also stops exporting macros.

* Test most new parts of ff 0.13

* Additionally test ff-group-tests with BLS12-381 and the pasta curves

We only tested curves from RustCrypto. Now we test a curve offered by zk-crypto,
the group behind ff/group, and the pasta curves, which is by Zcash (though
Zcash developers are also behind zk-crypto).

* Finish Ed448

Fully specifies all constants, passes all tests in ff-group-tests, and finishes moving to ff-0.13.

* Add RustCrypto/elliptic-curves to allowed git repos

Needed due to k256/p256 incorrectly defining product.

* Finish writing ff 0.13 tests

* Add additional comments to dalek

* Further comments

* Update ethereum-serai to ff 0.13
2023-03-28 04:38:01 -04:00

364 lines
12 KiB
Rust

use rand_core::RngCore;
use group::ff::{PrimeField, PrimeFieldBits};
use crate::field::test_field;
// Ideally, this and test_one would be under Field, yet these tests require access to From<u64>
/// Test zero returns F::from(0).
pub fn test_zero<F: PrimeField>() {
assert_eq!(F::ZERO, F::from(0u64), "0 != 0");
}
/// Test one returns F::from(1).
pub fn test_one<F: PrimeField>() {
assert_eq!(F::ONE, F::from(1u64), "1 != 1");
}
/// Test `From<u64>` for F works.
pub fn test_from_u64<F: PrimeField>() {
assert_eq!(F::ZERO, F::from(0u64), "0 != 0u64");
assert_eq!(F::ONE, F::from(1u64), "1 != 1u64");
assert_eq!(F::ONE.double(), F::from(2u64), "2 != 2u64");
assert_eq!(F::ONE.double() + F::ONE, F::from(3u64), "3 != 3u64");
}
/// Test from_u128 for F works.
pub fn test_from_u128<F: PrimeField>() {
assert_eq!(F::ZERO, F::from_u128(0u128), "0 != 0u128");
assert_eq!(F::ONE, F::from_u128(1u128), "1 != 1u128");
assert_eq!(F::from(2u64), F::from_u128(2u128), "2u64 != 2u128");
assert_eq!(F::from(3u64), F::from_u128(3u128), "3u64 != 3u128");
}
/// Test is_odd/is_even works.
/// This test assumes an odd modulus with oddness being determined by the least-significant bit.
/// Accordingly, this test doesn't support fields alternatively defined.
/// TODO: Improve in the future.
pub fn test_is_odd<F: PrimeField>() {
assert_eq!(F::ZERO.is_odd().unwrap_u8(), 0, "0 was odd");
assert_eq!(F::ZERO.is_even().unwrap_u8(), 1, "0 wasn't even");
assert_eq!(F::ONE.is_odd().unwrap_u8(), 1, "1 was even");
assert_eq!(F::ONE.is_even().unwrap_u8(), 0, "1 wasn't odd");
// Make sure an odd value added to an odd value is even
let two = F::ONE.double();
assert_eq!(two.is_odd().unwrap_u8(), 0, "2 was odd");
assert_eq!(two.is_even().unwrap_u8(), 1, "2 wasn't even");
// Make sure an even value added to an even value is even
let four = two.double();
assert_eq!(four.is_odd().unwrap_u8(), 0, "4 was odd");
assert_eq!(four.is_even().unwrap_u8(), 1, "4 wasn't even");
let neg_one = -F::ONE;
assert_eq!(neg_one.is_odd().unwrap_u8(), 0, "-1 was odd");
assert_eq!(neg_one.is_even().unwrap_u8(), 1, "-1 wasn't even");
assert_eq!(neg_one.double().is_odd().unwrap_u8(), 1, "(-1).double() was even");
assert_eq!(neg_one.double().is_even().unwrap_u8(), 0, "(-1).double() wasn't odd");
}
/// Test encoding and decoding of field elements.
pub fn test_encoding<F: PrimeField>() {
let test = |scalar: F, msg| {
let bytes = scalar.to_repr();
let mut repr = F::Repr::default();
repr.as_mut().copy_from_slice(bytes.as_ref());
assert_eq!(scalar, F::from_repr(repr).unwrap(), "{msg} couldn't be encoded and decoded");
assert_eq!(
scalar,
F::from_repr_vartime(repr).unwrap(),
"{msg} couldn't be encoded and decoded",
);
assert_eq!(
bytes.as_ref(),
F::from_repr(repr).unwrap().to_repr().as_ref(),
"canonical encoding decoded produced distinct encoding"
);
};
test(F::ZERO, "0");
test(F::ONE, "1");
test(F::ONE + F::ONE, "2");
test(-F::ONE, "-1");
// Also check if a non-canonical encoding is possible
let mut high = (F::ZERO - F::ONE).to_repr();
let mut possible_non_canon = false;
for byte in high.as_mut() {
// The fact a bit isn't set in the highest possible value suggests there's unused bits
// If there's unused bits, mark the possibility of a non-canonical encoding and set the bits
if *byte != 255 {
possible_non_canon = true;
*byte = 255;
break;
}
}
// Any non-canonical encoding should fail to be read
if possible_non_canon {
assert!(!bool::from(F::from_repr(high).is_some()));
}
}
/// Run all tests on fields implementing PrimeField.
pub fn test_prime_field<R: RngCore, F: PrimeField>(rng: &mut R) {
test_field::<R, F>(rng);
test_zero::<F>();
test_one::<F>();
test_from_u64::<F>();
test_from_u128::<F>();
test_is_odd::<F>();
// Do a sanity check on the CAPACITY. A full test can't be done at this time
assert!(F::CAPACITY <= F::NUM_BITS, "capacity exceeded number of bits");
test_encoding::<F>();
}
/// Test to_le_bits returns the little-endian bits of a value.
// This test assumes that the modulus is at least 4.
pub fn test_to_le_bits<F: PrimeField + PrimeFieldBits>() {
{
let bits = F::ZERO.to_le_bits();
assert_eq!(bits.iter().filter(|bit| **bit).count(), 0, "0 had bits set");
}
{
let bits = F::ONE.to_le_bits();
assert!(bits[0], "1 didn't have its least significant bit set");
assert_eq!(bits.iter().filter(|bit| **bit).count(), 1, "1 had multiple bits set");
}
{
let bits = F::from(2).to_le_bits();
assert!(bits[1], "2 didn't have its second bit set");
assert_eq!(bits.iter().filter(|bit| **bit).count(), 1, "2 had multiple bits set");
}
{
let bits = F::from(3).to_le_bits();
assert!(bits[0], "3 didn't have its first bit set");
assert!(bits[1], "3 didn't have its second bit set");
assert_eq!(bits.iter().filter(|bit| **bit).count(), 2, "2 didn't have two bits set");
}
}
/// Test char_le_bits returns the bits of the modulus.
pub fn test_char_le_bits<F: PrimeField + PrimeFieldBits>() {
// A field with a modulus of 0 may be technically valid? Yet these tests assume some basic
// functioning.
assert!(F::char_le_bits().iter().any(|bit| *bit), "char_le_bits contained 0");
// Test this is the bit pattern of the modulus by reconstructing the modulus from it
let mut bit = F::ONE;
let mut modulus = F::ZERO;
for set in F::char_le_bits() {
if set {
modulus += bit;
}
bit = bit.double();
}
assert_eq!(modulus, F::ZERO, "char_le_bits did not contain the field's modulus");
}
/// Test NUM_BITS is accurate.
pub fn test_num_bits<F: PrimeField + PrimeFieldBits>() {
let mut val = F::ONE;
let mut bit = 0;
while ((bit + 1) < val.to_le_bits().len()) && val.double().to_le_bits()[bit + 1] {
val = val.double();
bit += 1;
}
assert_eq!(
F::NUM_BITS,
u32::try_from(bit + 1).unwrap(),
"NUM_BITS was incorrect. it should be {}",
bit + 1
);
}
/// Test CAPACITY is accurate.
pub fn test_capacity<F: PrimeField + PrimeFieldBits>() {
assert!(F::CAPACITY <= F::NUM_BITS, "capacity exceeded number of bits");
let mut val = F::ONE;
assert!(val.to_le_bits()[0], "1 didn't have its least significant bit set");
for b in 1 .. F::CAPACITY {
val = val.double();
val += F::ONE;
for i in 0 ..= b {
assert!(
val.to_le_bits()[usize::try_from(i).unwrap()],
"couldn't set a bit within the capacity",
);
}
}
// If the field has a modulus which is a power of 2, NUM_BITS should equal CAPACITY
// Adding one would also be sufficient to trigger an overflow
if F::char_le_bits().iter().filter(|bit| **bit).count() == 1 {
assert_eq!(
F::NUM_BITS,
F::CAPACITY,
"field has a power of two modulus yet CAPACITY doesn't equal NUM_BITS",
);
assert_eq!(val + F::ONE, F::ZERO, "CAPACITY set bits, + 1, != zero for a binary field");
return;
}
assert_eq!(F::NUM_BITS - 1, F::CAPACITY, "capacity wasn't NUM_BITS - 1");
}
fn pow<F: PrimeFieldBits>(base: F, exp: F) -> F {
let mut res = F::ONE;
for bit in exp.to_le_bits().iter().rev() {
res *= res;
if *bit {
res *= base;
}
}
res
}
// Ideally, this would be under field.rs, yet the above pow function requires PrimeFieldBits
/// Perform basic tests on the pow functions, even when passed non-canonical inputs.
pub fn test_pow<F: PrimeFieldBits>() {
// Sanity check the local pow algorithm. Does not have assert messages as these shouldn't fail
assert_eq!(pow(F::ONE, F::ZERO), F::ONE);
assert_eq!(pow(F::ONE.double(), F::ZERO), F::ONE);
assert_eq!(pow(F::ONE, F::ONE), F::ONE);
let two = F::ONE.double();
assert_eq!(pow(two, F::ONE), two);
assert_eq!(pow(two, two), two.double());
let three = two + F::ONE;
assert_eq!(pow(three, F::ONE), three);
assert_eq!(pow(three, two), three * three);
assert_eq!(pow(three, three), three * three * three);
// Choose a small base without a notably uniform bit pattern
let bit_0 = F::ONE;
let base = {
let bit_1 = bit_0.double();
let bit_2 = bit_1.double();
let bit_3 = bit_2.double();
let bit_4 = bit_3.double();
let bit_5 = bit_4.double();
let bit_6 = bit_5.double();
let bit_7 = bit_6.double();
bit_7 + bit_6 + bit_5 + bit_2 + bit_0
};
// Ensure pow/pow_vartime return 1 when the base is raised to 0, handling malleated inputs
assert_eq!(base.pow([]), F::ONE, "pow x^0 ([]) != 1");
assert_eq!(base.pow_vartime([]), F::ONE, "pow x^0 ([]) != 1");
assert_eq!(base.pow([0]), F::ONE, "pow_vartime x^0 ([0]) != 1");
assert_eq!(base.pow_vartime([0]), F::ONE, "pow_vartime x^0 ([0]) != 1");
assert_eq!(base.pow([0, 0]), F::ONE, "pow x^0 ([0, 0]) != 1");
assert_eq!(base.pow_vartime([0, 0]), F::ONE, "pow_vartime x^0 ([0, 0]) != 1");
// Ensure pow/pow_vartime return the base when raised to 1, handling malleated inputs
assert_eq!(base.pow([1]), base, "pow x^1 ([1]) != x");
assert_eq!(base.pow_vartime([1, 0]), base, "pow_vartime x^1 ([1, 0]) != x");
assert_eq!(base.pow([1]), base, "pow x^1 ([1]) != x");
assert_eq!(base.pow_vartime([1, 0]), base, "pow_vartime x^1 ([1, 0]) != x");
// Ensure pow/pow_vartime can handle multiple u64s properly
// Create a scalar which exceeds u64
let mut bit_64 = bit_0;
for _ in 0 .. 64 {
bit_64 = bit_64.double();
}
// Run the tests
assert_eq!(base.pow([0, 1]), pow(base, bit_64), "pow x^(2^64) != x^(2^64)");
assert_eq!(base.pow_vartime([0, 1]), pow(base, bit_64), "pow_vartime x^(2^64) != x^(2^64)");
assert_eq!(base.pow([1, 1]), pow(base, bit_64 + F::ONE), "pow x^(2^64 + 1) != x^(2^64 + 1)");
assert_eq!(
base.pow_vartime([1, 1]),
pow(base, bit_64 + F::ONE),
"pow_vartime x^(2^64 + 1) != x^(2^64 + 1)"
);
}
/// Test the inverted constants are correct.
pub fn test_inv_consts<F: PrimeFieldBits>() {
assert_eq!(F::TWO_INV, F::from(2u64).invert().unwrap(), "F::TWO_INV != 2.invert()");
assert_eq!(
F::ROOT_OF_UNITY_INV,
F::ROOT_OF_UNITY.invert().unwrap(),
"F::ROOT_OF_UNITY_INV != F::ROOT_OF_UNITY.invert()"
);
}
/// Test S is correct.
pub fn test_s<F: PrimeFieldBits>() {
// "This is the number of leading zero bits in the little-endian bit representation of
// `modulus - 1`."
let mut s = 0;
for b in (F::ZERO - F::ONE).to_le_bits() {
if b {
break;
}
s += 1;
}
assert_eq!(s, F::S, "incorrect S");
}
/// Test the root of unity is correct for the provided multiplicative generator.
pub fn test_root_of_unity<F: PrimeFieldBits>() {
// "It can be calculated by exponentiating `Self::multiplicative_generator` by `t`, where
// `t = (modulus - 1) >> Self::S`."
// Get the bytes to shift
let mut bits = (F::ZERO - F::ONE).to_le_bits().iter().map(|bit| *bit).collect::<Vec<_>>();
for _ in 0 .. F::S {
bits.remove(0);
}
// Construct t
let mut bit = F::ONE;
let mut t = F::ZERO;
for set in bits {
if set {
t += bit;
}
bit = bit.double();
}
assert!(bool::from(t.is_odd()), "t wasn't odd");
assert_eq!(pow(F::MULTIPLICATIVE_GENERATOR, t), F::ROOT_OF_UNITY, "incorrect root of unity");
assert_eq!(
pow(F::ROOT_OF_UNITY, pow(F::from(2u64), F::from(F::S.into()))),
F::ONE,
"root of unity raised to 2^S wasn't 1",
);
}
/// Test DELTA is correct.
pub fn test_delta<F: PrimeFieldBits>() {
assert_eq!(
pow(F::MULTIPLICATIVE_GENERATOR, pow(F::from(2u64), F::from(u64::from(F::S)))),
F::DELTA,
"F::DELTA is incorrect"
);
}
/// Run all tests on fields implementing PrimeFieldBits.
pub fn test_prime_field_bits<R: RngCore, F: PrimeFieldBits>(rng: &mut R) {
test_prime_field::<R, F>(rng);
test_to_le_bits::<F>();
test_char_le_bits::<F>();
test_pow::<F>();
test_inv_consts::<F>();
test_s::<F>();
test_root_of_unity::<F>();
test_delta::<F>();
test_num_bits::<F>();
test_capacity::<F>();
}