use rand::{RngCore, rngs::OsRng}; use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar, edwards::EdwardsPoint}; use monero_serai::{random_scalar, Commitment, frost::MultisigError, key_image, clsag}; #[cfg(feature = "multisig")] mod frost; #[cfg(feature = "multisig")] use crate::frost::{THRESHOLD, generate_keys, sign}; const RING_INDEX: u8 = 3; const RING_LEN: u64 = 11; const AMOUNT: u64 = 1337; #[test] fn test_single() { let msg = [1; 32]; let mut secrets = [Scalar::zero(), Scalar::zero()]; let mut ring = vec![]; for i in 0 .. RING_LEN { let dest = random_scalar(&mut OsRng); let mask = random_scalar(&mut OsRng); let amount; if i == u64::from(RING_INDEX) { secrets = [dest, mask]; amount = AMOUNT; } else { amount = OsRng.next_u64(); } ring.push([&dest * &ED25519_BASEPOINT_TABLE, Commitment::new(mask, amount).calculate()]); } let image = key_image::generate(&secrets[0]); let (clsag, pseudo_out) = clsag::sign( &mut OsRng, msg, &vec![( secrets[0], clsag::Input::new( ring.clone(), RING_INDEX, Commitment::new(secrets[1], AMOUNT) ).unwrap(), image )], Scalar::zero() ).unwrap().swap_remove(0); assert!(clsag::verify(&clsag, &msg, image, &ring, pseudo_out)); } #[cfg(feature = "multisig")] #[derive(Clone, Debug)] struct Msg([u8; 32]); #[cfg(feature = "multisig")] impl clsag::Msg for Msg { fn msg(&self, _: EdwardsPoint) -> [u8; 32] { self.0 } } #[cfg(feature = "multisig")] #[test] fn test_multisig() -> Result<(), MultisigError> { let (keys, group_private) = generate_keys(); let t = keys[0].params().t(); let msg = [1; 32]; let randomness = random_scalar(&mut OsRng); let mut ring = vec![]; for i in 0 .. RING_LEN { let dest; let mask; let amount; if i != u64::from(RING_INDEX) { dest = random_scalar(&mut OsRng); mask = random_scalar(&mut OsRng); amount = OsRng.next_u64(); } else { dest = group_private.0; mask = randomness; amount = AMOUNT; } ring.push([&dest * &ED25519_BASEPOINT_TABLE, Commitment::new(mask, amount).calculate()]); } let mut machines = Vec::with_capacity(t); for i in 1 ..= t { machines.push( sign::AlgorithmMachine::new( clsag::InputMultisig::new( clsag::Input::new(ring.clone(), RING_INDEX, Commitment::new(randomness, AMOUNT)).unwrap(), Msg(msg) ).unwrap(), keys[i - 1].clone(), &(1 ..= THRESHOLD).collect::>() ).unwrap() ); } let mut signatures = sign(&mut machines, keys); let signature = signatures.swap_remove(0); for s in 0 .. (t - 1) { // Verify the commitments and the non-decoy s scalar are identical to every other signature // FROST will already have called verify on the produced signature, before checking individual // key shares. For FROST Schnorr, it's cheaper. For CLSAG, it may be more expensive? Yet it // ensures we have usable signatures, not just signatures we think are usable assert_eq!(signatures[s].1, signature.1); assert_eq!(signatures[s].0.s[RING_INDEX as usize], signature.0.s[RING_INDEX as usize]); } Ok(()) }