use ff::PrimeField; use group::{Group, GroupEncoding, ScalarMul}; // An implementation of Straus, with a extremely minimal API that lets us add other algorithms in // the future. Takes in a list of scalars and points with a boolean for if the scalars are little // endian encoded or not pub fn multiexp_vartime>( scalars: &[F], points: &[G], little: bool ) -> G { let mut tables = vec![]; // dalek uses 8 in their impl, along with a carry scheme where values are [-8, 8) // Moving to a similar system here did save a marginal amount, yet not one significant enough for // its pain (as some fields do have scalars which can have their top bit set, a scenario dalek // assumes is never true) tables.resize(points.len(), [G::identity(); 16]); for p in 0 .. points.len() { let mut accum = G::identity(); for i in 1 .. 16 { accum += points[p]; tables[p][i] = accum; } } let mut nibbles = vec![]; nibbles.resize(scalars.len(), vec![]); for s in 0 .. scalars.len() { let mut repr = scalars[s].to_repr(); let bytes = repr.as_mut(); if !little { bytes.reverse(); } nibbles[s].resize(bytes.len() * 2, 0); for i in 0 .. bytes.len() { nibbles[s][i * 2] = bytes[i] & 0b1111; nibbles[s][(i * 2) + 1] = (bytes[i] >> 4) & 0b1111; } } let mut res = G::identity(); for b in (0 .. nibbles[0].len()).rev() { for _ in 0 .. 4 { res = res.double(); } for s in 0 .. scalars.len() { if nibbles[s][b] != 0 { res += tables[s][nibbles[s][b] as usize]; } } } res }