use thiserror::Error; use rand_core::{RngCore, CryptoRng}; use digest::Digest; use subtle::{Choice, ConditionallySelectable}; use transcript::Transcript; use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup}; use crate::Generators; pub mod scalar; use scalar::scalar_convert; pub(crate) mod schnorr; use schnorr::SchnorrPoK; #[cfg(feature = "serialize")] use std::io::{Read, Write}; #[cfg(feature = "serialize")] use crate::read_scalar; #[cfg(feature = "serialize")] pub(crate) fn read_point(r: &mut R) -> std::io::Result { let mut repr = G::Repr::default(); r.read_exact(repr.as_mut())?; let point = G::from_bytes(&repr); if point.is_none().into() { Err(std::io::Error::new(std::io::ErrorKind::Other, "invalid point"))?; } Ok(point.unwrap()) } #[derive(Clone, PartialEq, Eq, Debug)] pub struct Bit { commitments: (G0, G1), // Merged challenges have a slight security reduction, yet one already applied to the scalar // being proven for, and this saves ~8kb. Alternatively, challenges could be redefined as a seed, // present here, which is then hashed for each of the two challenges, remaining unbiased/unique // while maintaining the bandwidth savings, yet also while adding 252 hashes for // Secp256k1/Ed25519 e: G0::Scalar, s: [(G0::Scalar, G1::Scalar); 2] } impl Bit { #[cfg(feature = "serialize")] pub fn serialize(&self, w: &mut W) -> std::io::Result<()> { w.write_all(self.commitments.0.to_bytes().as_ref())?; w.write_all(self.commitments.1.to_bytes().as_ref())?; w.write_all(self.e.to_repr().as_ref())?; for i in 0 .. 2 { w.write_all(self.s[i].0.to_repr().as_ref())?; w.write_all(self.s[i].1.to_repr().as_ref())?; } Ok(()) } #[cfg(feature = "serialize")] pub fn deserialize(r: &mut R) -> std::io::Result> { Ok( Bit { commitments: (read_point(r)?, read_point(r)?), e: read_scalar(r)?, s: [ (read_scalar(r)?, read_scalar(r)?), (read_scalar(r)?, read_scalar(r)?) ] } ) } } #[derive(Error, PartialEq, Eq, Debug)] pub enum DLEqError { #[error("invalid proof of knowledge")] InvalidProofOfKnowledge, #[error("invalid proof length")] InvalidProofLength, #[error("invalid challenge")] InvalidChallenge, #[error("invalid proof")] InvalidProof } // Debug would be such a dump of data this likely isn't helpful, but at least it's available to // anyone who wants it #[derive(Clone, PartialEq, Eq, Debug)] pub struct DLEqProof { bits: Vec>, poks: (SchnorrPoK, SchnorrPoK) } impl DLEqProof where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits { fn initialize_transcript( transcript: &mut T, generators: (Generators, Generators), keys: (G0, G1) ) { generators.0.transcript(transcript); generators.1.transcript(transcript); transcript.domain_separate(b"points"); transcript.append_message(b"point_0", keys.0.to_bytes().as_ref()); transcript.append_message(b"point_1", keys.1.to_bytes().as_ref()); } fn blinding_key( rng: &mut R, total: &mut F, last: bool ) -> F { let blinding_key = if last { -*total } else { F::random(&mut *rng) }; *total += blinding_key; blinding_key } fn mutual_scalar_from_bytes(bytes: &[u8]) -> (G0::Scalar, G1::Scalar) { let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap(); debug_assert!((bytes.len() * 8) >= capacity); let mut accum = G0::Scalar::zero(); for b in 0 .. capacity { accum += G0::Scalar::from((bytes[b / 8] & (1 << (b % 8))).into()); } (accum, scalar_convert(accum).unwrap()) } #[allow(non_snake_case)] fn nonces(mut transcript: T, nonces: (G0, G1)) -> (G0::Scalar, G1::Scalar) { transcript.append_message(b"nonce_0", nonces.0.to_bytes().as_ref()); transcript.append_message(b"nonce_1", nonces.1.to_bytes().as_ref()); Self::mutual_scalar_from_bytes(transcript.challenge(b"challenge").as_ref()) } #[allow(non_snake_case)] fn R_nonces( transcript: T, generators: (Generators, Generators), s: (G0::Scalar, G1::Scalar), A: (G0, G1), e: (G0::Scalar, G1::Scalar) ) -> (G0::Scalar, G1::Scalar) { Self::nonces( transcript, (((generators.0.alt * s.0) - (A.0 * e.0)), ((generators.1.alt * s.1) - (A.1 * e.1))) ) } fn reconstruct_keys(&self) -> (G0, G1) { ( self.bits.iter().map(|bit| bit.commitments.0).sum(), self.bits.iter().map(|bit| bit.commitments.1).sum() ) } fn transcript_bit(transcript: &mut T, i: usize, commitments: (G0, G1)) { if i == 0 { transcript.domain_separate(b"cross_group_dleq"); } transcript.append_message(b"bit", &u16::try_from(i).unwrap().to_le_bytes()); transcript.append_message(b"commitment_0", commitments.0.to_bytes().as_ref()); transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref()); } fn prove_internal( rng: &mut R, transcript: &mut T, generators: (Generators, Generators), f: (G0::Scalar, G1::Scalar) ) -> (Self, (G0::Scalar, G1::Scalar)) { Self::initialize_transcript( transcript, generators, ((generators.0.primary * f.0), (generators.1.primary * f.1)) ); let poks = ( SchnorrPoK::::prove(rng, transcript, generators.0.primary, f.0), SchnorrPoK::::prove(rng, transcript, generators.1.primary, f.1) ); let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero()); let mut pow_2 = (generators.0.primary, generators.1.primary); let raw_bits = f.0.to_le_bits(); let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap(); let mut bits = Vec::with_capacity(capacity); for (i, bit) in raw_bits.iter().enumerate() { let bit = *bit as u8; debug_assert_eq!(bit | 1, 1); let last = i == (capacity - 1); let blinding_key = ( Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last), Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last) ); if last { debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero()); debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero()); } let mut commitments = ( (generators.0.alt * blinding_key.0), (generators.1.alt * blinding_key.1) ); commitments.0 += pow_2.0 * G0::Scalar::from(bit.into()); commitments.1 += pow_2.1 * G1::Scalar::from(bit.into()); Self::transcript_bit(transcript, i, commitments); let nonces = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng)); let e_0 = Self::nonces( transcript.clone(), ((generators.0.alt * nonces.0), (generators.1.alt * nonces.1)) ); let mut s_0 = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng)); let mut to_sign = commitments; let bit = Choice::from(bit); let inv_bit = (!bit).unwrap_u8(); to_sign.0 -= pow_2.0 * G0::Scalar::from(inv_bit.into()); to_sign.1 -= pow_2.1 * G1::Scalar::from(inv_bit.into()); let e_1 = Self::R_nonces(transcript.clone(), generators, (s_0.0, s_0.1), to_sign, e_0); let mut s_1 = (nonces.0 + (e_1.0 * blinding_key.0), nonces.1 + (e_1.1 * blinding_key.1)); let e = G0::Scalar::conditional_select(&e_1.0, &e_0.0, bit); G0::Scalar::conditional_swap(&mut s_1.0, &mut s_0.0, bit); G1::Scalar::conditional_swap(&mut s_1.1, &mut s_0.1, bit); bits.push(Bit { commitments, e, s: [s_0, s_1] }); // Break in order to not generate commitments for unused bits if last { break; } pow_2.0 = pow_2.0.double(); pow_2.1 = pow_2.1.double(); } let proof = DLEqProof { bits, poks }; debug_assert_eq!( proof.reconstruct_keys(), (generators.0.primary * f.0, generators.1.primary * f.1) ); (proof, f) } /// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as /// the output of the passed in Digest. Given the non-standard requirements to achieve /// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way /// to safely and securely generate a Scalar, without risk of failure, nor bias /// It also ensures a lack of determinable relation between keys, guaranteeing security in the /// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing /// the relationship between keys would allow breaking all swaps after just one pub fn prove( rng: &mut R, transcript: &mut T, generators: (Generators, Generators), digest: D ) -> (Self, (G0::Scalar, G1::Scalar)) { Self::prove_internal( rng, transcript, generators, Self::mutual_scalar_from_bytes(digest.finalize().as_ref()) ) } /// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in, /// failing if it's not mutually valid. This allows for rejection sampling externally derived /// scalars until they're safely usable, as needed pub fn prove_without_bias( rng: &mut R, transcript: &mut T, generators: (Generators, Generators), f0: G0::Scalar ) -> Option<(Self, (G0::Scalar, G1::Scalar))> { scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1))) } /// Verify a cross-Group Discrete Log Equality statement, returning the points proven for pub fn verify( &self, transcript: &mut T, generators: (Generators, Generators) ) -> Result<(G0, G1), DLEqError> { let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY); if self.bits.len() != capacity.try_into().unwrap() { return Err(DLEqError::InvalidProofLength); } let keys = self.reconstruct_keys(); Self::initialize_transcript(transcript, generators, keys); if !( self.poks.0.verify(transcript, generators.0.primary, keys.0) && self.poks.1.verify(transcript, generators.1.primary, keys.1) ) { Err(DLEqError::InvalidProofOfKnowledge)?; } let mut pow_2 = (generators.0.primary, generators.1.primary); for (i, bit) in self.bits.iter().enumerate() { Self::transcript_bit(transcript, i, bit.commitments); let bit_e = (bit.e, scalar_convert(bit.e).ok_or(DLEqError::InvalidChallenge)?); if bit_e != Self::R_nonces( transcript.clone(), generators, bit.s[0], ( bit.commitments.0 - pow_2.0, bit.commitments.1 - pow_2.1 ), Self::R_nonces( transcript.clone(), generators, bit.s[1], bit.commitments, bit_e ) ) { return Err(DLEqError::InvalidProof); } pow_2.0 = pow_2.0.double(); pow_2.1 = pow_2.1.double(); } Ok(keys) } #[cfg(feature = "serialize")] pub fn serialize(&self, w: &mut W) -> std::io::Result<()> { for bit in &self.bits { bit.serialize(w)?; } self.poks.0.serialize(w)?; self.poks.1.serialize(w) } #[cfg(feature = "serialize")] pub fn deserialize(r: &mut R) -> std::io::Result> { let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY); let mut bits = Vec::with_capacity(capacity.try_into().unwrap()); for _ in 0 .. capacity { bits.push(Bit::deserialize(r)?); } Ok(DLEqProof { bits, poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?) }) } }