#![no_std] use core::{ ops::{Deref, Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign}, borrow::Borrow, iter::{Iterator, Sum}, }; use subtle::{ConstantTimeEq, ConditionallySelectable}; use rand_core::RngCore; use digest::{consts::U64, Digest}; use subtle::{Choice, CtOption}; pub use curve25519_dalek as dalek; use dalek::{ constants, traits::Identity, scalar::Scalar as DScalar, edwards::{ EdwardsPoint as DEdwardsPoint, EdwardsBasepointTable as DEdwardsBasepointTable, CompressedEdwardsY as DCompressedEdwards, }, ristretto::{ RistrettoPoint as DRistrettoPoint, RistrettoBasepointTable as DRistrettoBasepointTable, CompressedRistretto as DCompressedRistretto, }, }; use ff::{Field, PrimeField, FieldBits, PrimeFieldBits}; use group::{Group, GroupEncoding, prime::PrimeGroup}; pub mod field; // Convert a boolean to a Choice in a *presumably* constant time manner fn choice(value: bool) -> Choice { let bit = value as u8; debug_assert_eq!(bit | 1, 1); Choice::from(bit) } macro_rules! deref_borrow { ($Source: ident, $Target: ident) => { impl Deref for $Source { type Target = $Target; fn deref(&self) -> &Self::Target { &self.0 } } impl Borrow<$Target> for $Source { fn borrow(&self) -> &$Target { &self.0 } } impl Borrow<$Target> for &$Source { fn borrow(&self) -> &$Target { &self.0 } } }; } #[doc(hidden)] #[macro_export] macro_rules! constant_time { ($Value: ident, $Inner: ident) => { impl ConstantTimeEq for $Value { fn ct_eq(&self, other: &Self) -> Choice { self.0.ct_eq(&other.0) } } impl ConditionallySelectable for $Value { fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self { $Value($Inner::conditional_select(&a.0, &b.0, choice)) } } }; } #[doc(hidden)] #[macro_export] macro_rules! math_op { ( $Value: ident, $Other: ident, $Op: ident, $op_fn: ident, $Assign: ident, $assign_fn: ident, $function: expr ) => { impl $Op<$Other> for $Value { type Output = $Value; fn $op_fn(self, other: $Other) -> Self::Output { Self($function(self.0, other.0)) } } impl $Assign<$Other> for $Value { fn $assign_fn(&mut self, other: $Other) { self.0 = $function(self.0, other.0); } } impl<'a> $Op<&'a $Other> for $Value { type Output = $Value; fn $op_fn(self, other: &'a $Other) -> Self::Output { Self($function(self.0, other.0)) } } impl<'a> $Assign<&'a $Other> for $Value { fn $assign_fn(&mut self, other: &'a $Other) { self.0 = $function(self.0, other.0); } } }; } #[doc(hidden)] #[macro_export] macro_rules! math { ($Value: ident, $Factor: ident, $add: expr, $sub: expr, $mul: expr) => { math_op!($Value, $Value, Add, add, AddAssign, add_assign, $add); math_op!($Value, $Value, Sub, sub, SubAssign, sub_assign, $sub); math_op!($Value, $Factor, Mul, mul, MulAssign, mul_assign, $mul); }; } macro_rules! math_neg { ($Value: ident, $Factor: ident, $add: expr, $sub: expr, $mul: expr) => { math!($Value, $Factor, $add, $sub, $mul); impl Neg for $Value { type Output = Self; fn neg(self) -> Self::Output { Self(-self.0) } } }; } #[doc(hidden)] #[macro_export] macro_rules! from_wrapper { ($wrapper: ident, $inner: ident, $uint: ident) => { impl From<$uint> for $wrapper { fn from(a: $uint) -> $wrapper { Self($inner::from(a)) } } }; } #[doc(hidden)] #[macro_export] macro_rules! from_uint { ($wrapper: ident, $inner: ident) => { from_wrapper!($wrapper, $inner, u8); from_wrapper!($wrapper, $inner, u16); from_wrapper!($wrapper, $inner, u32); from_wrapper!($wrapper, $inner, u64); }; } /// Wrapper around the dalek Scalar type #[derive(Clone, Copy, PartialEq, Eq, Debug, Default)] pub struct Scalar(pub DScalar); deref_borrow!(Scalar, DScalar); constant_time!(Scalar, DScalar); math_neg!(Scalar, Scalar, DScalar::add, DScalar::sub, DScalar::mul); from_uint!(Scalar, DScalar); impl Scalar { /// Perform wide reduction on a 64-byte array to create a Scalar without bias pub fn from_bytes_mod_order_wide(bytes: &[u8; 64]) -> Scalar { Self(DScalar::from_bytes_mod_order_wide(bytes)) } /// Derive a Scalar without bias from a digest via wide reduction pub fn from_hash>(hash: D) -> Scalar { let mut output = [0u8; 64]; output.copy_from_slice(&hash.finalize()); Scalar(DScalar::from_bytes_mod_order_wide(&output)) } } impl Field for Scalar { fn random(mut rng: impl RngCore) -> Self { let mut r = [0; 64]; rng.fill_bytes(&mut r); Self(DScalar::from_bytes_mod_order_wide(&r)) } fn zero() -> Self { Self(DScalar::zero()) } fn one() -> Self { Self(DScalar::one()) } fn square(&self) -> Self { *self * self } fn double(&self) -> Self { *self + self } fn invert(&self) -> CtOption { CtOption::new(Self(self.0.invert()), !self.is_zero()) } fn sqrt(&self) -> CtOption { unimplemented!() } fn is_zero(&self) -> Choice { self.0.ct_eq(&DScalar::zero()) } fn cube(&self) -> Self { *self * self * self } fn pow_vartime>(&self, _exp: S) -> Self { unimplemented!() } } impl PrimeField for Scalar { type Repr = [u8; 32]; const NUM_BITS: u32 = 253; const CAPACITY: u32 = 252; fn from_repr(bytes: [u8; 32]) -> CtOption { let scalar = DScalar::from_canonical_bytes(bytes); // TODO: This unwrap_or isn't constant time, yet do we have an alternative? CtOption::new(Scalar(scalar.unwrap_or_else(DScalar::zero)), choice(scalar.is_some())) } fn to_repr(&self) -> [u8; 32] { self.0.to_bytes() } const S: u32 = 2; fn is_odd(&self) -> Choice { unimplemented!() } fn multiplicative_generator() -> Self { 2u64.into() } fn root_of_unity() -> Self { unimplemented!() } } impl PrimeFieldBits for Scalar { type ReprBits = [u8; 32]; fn to_le_bits(&self) -> FieldBits { self.to_repr().into() } fn char_le_bits() -> FieldBits { let mut bytes = (Scalar::zero() - Scalar::one()).to_repr(); bytes[0] += 1; debug_assert_eq!(DScalar::from_bytes_mod_order(bytes), DScalar::zero()); bytes.into() } } impl Sum for Scalar { fn sum>(iter: I) -> Scalar { Self(DScalar::sum(iter)) } } macro_rules! dalek_group { ( $Point: ident, $DPoint: ident, $torsion_free: expr, $Table: ident, $DTable: ident, $DCompressed: ident, $BASEPOINT_POINT: ident, $BASEPOINT_TABLE: ident ) => { /// Wrapper around the dalek Point type. For Ed25519, this is restricted to the prime subgroup #[derive(Clone, Copy, PartialEq, Eq, Debug)] pub struct $Point(pub $DPoint); deref_borrow!($Point, $DPoint); constant_time!($Point, $DPoint); math_neg!($Point, Scalar, $DPoint::add, $DPoint::sub, $DPoint::mul); pub const $BASEPOINT_POINT: $Point = $Point(constants::$BASEPOINT_POINT); impl Sum<$Point> for $Point { fn sum>(iter: I) -> $Point { Self($DPoint::sum(iter)) } } impl<'a> Sum<&'a $Point> for $Point { fn sum>(iter: I) -> $Point { Self($DPoint::sum(iter)) } } impl Group for $Point { type Scalar = Scalar; // Ideally, this would be cryptographically secure, yet that's not a bound on the trait // k256 also does this fn random(rng: impl RngCore) -> Self { &$BASEPOINT_TABLE * Scalar::random(rng) } fn identity() -> Self { Self($DPoint::identity()) } fn generator() -> Self { $BASEPOINT_POINT } fn is_identity(&self) -> Choice { self.0.ct_eq(&$DPoint::identity()) } fn double(&self) -> Self { *self + self } } impl GroupEncoding for $Point { type Repr = [u8; 32]; fn from_bytes(bytes: &Self::Repr) -> CtOption { let decompressed = $DCompressed(*bytes).decompress(); // TODO: Same note on unwrap_or as above let point = decompressed.unwrap_or($DPoint::identity()); CtOption::new($Point(point), choice(decompressed.is_some()) & choice($torsion_free(point))) } fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption { $Point::from_bytes(bytes) } fn to_bytes(&self) -> Self::Repr { self.0.compress().to_bytes() } } impl PrimeGroup for $Point {} /// Wrapper around the dalek Table type, offering efficient multiplication against the /// basepoint pub struct $Table(pub $DTable); deref_borrow!($Table, $DTable); pub const $BASEPOINT_TABLE: $Table = $Table(constants::$BASEPOINT_TABLE); impl Mul for &$Table { type Output = $Point; fn mul(self, b: Scalar) -> $Point { $Point(&b.0 * &self.0) } } }; } dalek_group!( EdwardsPoint, DEdwardsPoint, |point: DEdwardsPoint| point.is_torsion_free(), EdwardsBasepointTable, DEdwardsBasepointTable, DCompressedEdwards, ED25519_BASEPOINT_POINT, ED25519_BASEPOINT_TABLE ); impl EdwardsPoint { pub fn mul_by_cofactor(&self) -> EdwardsPoint { EdwardsPoint(self.0.mul_by_cofactor()) } } dalek_group!( RistrettoPoint, DRistrettoPoint, |_| true, RistrettoBasepointTable, DRistrettoBasepointTable, DCompressedRistretto, RISTRETTO_BASEPOINT_POINT, RISTRETTO_BASEPOINT_TABLE );