use core::marker::PhantomData; use std::collections::HashMap; use zeroize::Zeroizing; use rand_core::SeedableRng; use rand_chacha::ChaCha20Rng; use transcript::{Transcript, RecommendedTranscript}; use group::GroupEncoding; use frost::{ curve::{Ciphersuite, Ristretto}, dkg::{Participant, ThresholdParams, ThresholdCore, ThresholdKeys, encryption::*, frost::*}, }; use log::info; use serai_client::validator_sets::primitives::ValidatorSet; use messages::key_gen::*; use crate::{DbTxn, Db, coins::Coin}; #[derive(Debug)] pub enum KeyGenEvent { KeyConfirmed { activation_number: usize, substrate_keys: ThresholdKeys, coin_keys: ThresholdKeys, }, ProcessorMessage(ProcessorMessage), } #[derive(Clone, Debug)] struct KeyGenDb(D, PhantomData); impl KeyGenDb { fn key_gen_key(dst: &'static [u8], key: impl AsRef<[u8]>) -> Vec { D::key(b"KEY_GEN", dst, key) } fn params_key(set: &ValidatorSet) -> Vec { Self::key_gen_key(b"params", bincode::serialize(set).unwrap()) } fn save_params( &mut self, txn: &mut D::Transaction, set: &ValidatorSet, params: &ThresholdParams, ) { txn.put(Self::params_key(set), bincode::serialize(params).unwrap()); } fn params(&self, set: &ValidatorSet) -> ThresholdParams { // Directly unwraps the .get() as this will only be called after being set bincode::deserialize(&self.0.get(Self::params_key(set)).unwrap()).unwrap() } // Not scoped to the set since that'd have latter attempts overwrite former // A former attempt may become the finalized attempt, even if it doesn't in a timely manner // Overwriting its commitments would be accordingly poor fn commitments_key(id: &KeyGenId) -> Vec { Self::key_gen_key(b"commitments", bincode::serialize(id).unwrap()) } fn save_commitments( &mut self, txn: &mut D::Transaction, id: &KeyGenId, commitments: &HashMap>, ) { txn.put(Self::commitments_key(id), bincode::serialize(commitments).unwrap()); } fn commitments(&self, id: &KeyGenId) -> HashMap> { bincode::deserialize::>>( &self.0.get(Self::commitments_key(id)).unwrap(), ) .unwrap() } fn generated_keys_key(id: &KeyGenId) -> Vec { Self::key_gen_key(b"generated_keys", bincode::serialize(id).unwrap()) } fn save_keys( &mut self, txn: &mut D::Transaction, id: &KeyGenId, substrate_keys: &ThresholdCore, coin_keys: &ThresholdCore, ) { let mut keys = substrate_keys.serialize(); keys.extend(coin_keys.serialize().iter()); txn.put(Self::generated_keys_key(id), keys); } fn keys_key(key: &::G) -> Vec { Self::key_gen_key(b"keys", key.to_bytes()) } #[allow(clippy::type_complexity)] fn read_keys( &self, key: &[u8], ) -> (Vec, (ThresholdKeys, ThresholdKeys)) { let keys_vec = self.0.get(key).unwrap(); let mut keys_ref: &[u8] = keys_vec.as_ref(); let substrate_keys = ThresholdKeys::new(ThresholdCore::read(&mut keys_ref).unwrap()); let mut coin_keys = ThresholdKeys::new(ThresholdCore::read(&mut keys_ref).unwrap()); C::tweak_keys(&mut coin_keys); (keys_vec, (substrate_keys, coin_keys)) } fn confirm_keys( &mut self, txn: &mut D::Transaction, id: &KeyGenId, ) -> (ThresholdKeys, ThresholdKeys) { let (keys_vec, keys) = self.read_keys(&Self::generated_keys_key(id)); txn.put(Self::keys_key(&keys.1.group_key()), keys_vec); keys } fn keys( &self, key: &::G, ) -> (ThresholdKeys, ThresholdKeys) { self.read_keys(&Self::keys_key(key)).1 } } /// Coded so if the processor spontaneously reboots, one of two paths occur: /// 1) It either didn't send its response, so the attempt will be aborted /// 2) It did send its response, and has locally saved enough data to continue #[derive(Debug)] pub struct KeyGen { db: KeyGenDb, entropy: Zeroizing<[u8; 32]>, active_commit: HashMap, SecretShareMachine)>, active_share: HashMap, KeyMachine)>, } impl KeyGen { #[allow(clippy::new_ret_no_self)] pub fn new(db: D, entropy: Zeroizing<[u8; 32]>) -> KeyGen { KeyGen { db: KeyGenDb(db, PhantomData::), entropy, active_commit: HashMap::new(), active_share: HashMap::new(), } } pub fn keys( &self, key: &::G, ) -> (ThresholdKeys, ThresholdKeys) { self.db.keys(key) } pub async fn handle(&mut self, msg: CoordinatorMessage) -> KeyGenEvent { let context = |id: &KeyGenId| { // TODO2: Also embed the chain ID/genesis block format!( "Serai Key Gen. Session: {:?}, Network: {:?}, Attempt: {}", id.set.session, id.set.network, id.attempt ) }; let rng = |label, id: KeyGenId| { let mut transcript = RecommendedTranscript::new(label); transcript.append_message(b"entropy", self.entropy.as_ref()); transcript.append_message(b"context", context(&id)); ChaCha20Rng::from_seed(transcript.rng_seed(b"rng")) }; let coefficients_rng = |id| rng(b"Key Gen Coefficients", id); let secret_shares_rng = |id| rng(b"Key Gen Secret Shares", id); let share_rng = |id| rng(b"Key Gen Share", id); let key_gen_machines = |id, params| { let mut rng = coefficients_rng(id); let substrate = KeyGenMachine::new(params, context(&id)).generate_coefficients(&mut rng); let coin = KeyGenMachine::new(params, context(&id)).generate_coefficients(&mut rng); ((substrate.0, coin.0), (substrate.1, coin.1)) }; match msg { CoordinatorMessage::GenerateKey { id, params } => { info!("Generating new key. ID: {:?} Params: {:?}", id, params); // Remove old attempts if self.active_commit.remove(&id.set).is_none() && self.active_share.remove(&id.set).is_none() { // If we haven't handled this set before, save the params // This may overwrite previously written params if we rebooted, yet that isn't a // concern let mut txn = self.db.0.txn(); self.db.save_params(&mut txn, &id.set, ¶ms); txn.commit(); } let (machines, commitments) = key_gen_machines(id, params); let mut serialized = commitments.0.serialize(); serialized.extend(commitments.1.serialize()); self.active_commit.insert(id.set, machines); KeyGenEvent::ProcessorMessage(ProcessorMessage::Commitments { id, commitments: serialized }) } CoordinatorMessage::Commitments { id, commitments } => { info!("Received commitments for {:?}", id); if self.active_share.contains_key(&id.set) { // We should've been told of a new attempt before receiving commitments again // The coordinator is either missing messages or repeating itself // Either way, it's faulty panic!("commitments when already handled commitments"); } let params = self.db.params(&id.set); // Unwrap the machines, rebuilding them if we didn't have them in our cache // We won't if the processor rebooted // This *may* be inconsistent if we receive a KeyGen for attempt x, then commitments for // attempt y // The coordinator is trusted to be proper in this regard let machines = self.active_commit.remove(&id.set).unwrap_or_else(|| key_gen_machines(id, params).0); let mut rng = secret_shares_rng(id); let mut commitments_ref: HashMap = commitments.iter().map(|(i, commitments)| (*i, commitments.as_ref())).collect(); #[allow(clippy::type_complexity)] fn handle_machine( rng: &mut ChaCha20Rng, params: ThresholdParams, machine: SecretShareMachine, commitments_ref: &mut HashMap, ) -> (KeyMachine, HashMap>>) { // Parse the commitments let parsed = match commitments_ref .iter_mut() .map(|(i, commitments)| { EncryptionKeyMessage::>::read(commitments, params) .map(|commitments| (*i, commitments)) }) .collect() { Ok(commitments) => commitments, Err(e) => todo!("malicious signer: {:?}", e), }; match machine.generate_secret_shares(rng, parsed) { Ok(res) => res, Err(e) => todo!("malicious signer: {:?}", e), } } let (substrate_machine, mut substrate_shares) = handle_machine::(&mut rng, params, machines.0, &mut commitments_ref); let (coin_machine, coin_shares) = handle_machine(&mut rng, params, machines.1, &mut commitments_ref); self.active_share.insert(id.set, (substrate_machine, coin_machine)); let mut shares: HashMap<_, _> = substrate_shares.drain().map(|(i, share)| (i, share.serialize())).collect(); for (i, share) in shares.iter_mut() { share.extend(coin_shares[i].serialize()); } let mut txn = self.db.0.txn(); self.db.save_commitments(&mut txn, &id, &commitments); txn.commit(); KeyGenEvent::ProcessorMessage(ProcessorMessage::Shares { id, shares }) } CoordinatorMessage::Shares { id, shares } => { info!("Received shares for {:?}", id); let params = self.db.params(&id.set); // Same commentary on inconsistency as above exists let machines = self.active_share.remove(&id.set).unwrap_or_else(|| { let machines = key_gen_machines(id, params).0; let mut rng = secret_shares_rng(id); let commitments = self.db.commitments(&id); let mut commitments_ref: HashMap = commitments.iter().map(|(i, commitments)| (*i, commitments.as_ref())).collect(); fn parse_commitments( params: ThresholdParams, commitments_ref: &mut HashMap, ) -> HashMap>> { commitments_ref .iter_mut() .map(|(i, commitments)| { (*i, EncryptionKeyMessage::>::read(commitments, params).unwrap()) }) .collect() } ( machines .0 .generate_secret_shares(&mut rng, parse_commitments(params, &mut commitments_ref)) .unwrap() .0, machines .1 .generate_secret_shares(&mut rng, parse_commitments(params, &mut commitments_ref)) .unwrap() .0, ) }); let mut rng = share_rng(id); let mut shares_ref: HashMap = shares.iter().map(|(i, shares)| (*i, shares.as_ref())).collect(); fn handle_machine( rng: &mut ChaCha20Rng, params: ThresholdParams, machine: KeyMachine, shares_ref: &mut HashMap, ) -> ThresholdCore { // Parse the shares let shares = match shares_ref .iter_mut() .map(|(i, share)| { EncryptedMessage::>::read(share, params).map(|share| (*i, share)) }) .collect() { Ok(shares) => shares, Err(e) => todo!("malicious signer: {:?}", e), }; // TODO2: Handle the blame machine properly (match machine.calculate_share(rng, shares) { Ok(res) => res, Err(e) => todo!("malicious signer: {:?}", e), }) .complete() } let substrate_keys = handle_machine(&mut rng, params, machines.0, &mut shares_ref); let coin_keys = handle_machine(&mut rng, params, machines.1, &mut shares_ref); let mut txn = self.db.0.txn(); self.db.save_keys(&mut txn, &id, &substrate_keys, &coin_keys); txn.commit(); let mut coin_keys = ThresholdKeys::new(coin_keys); C::tweak_keys(&mut coin_keys); KeyGenEvent::ProcessorMessage(ProcessorMessage::GeneratedKeyPair { id, substrate_key: substrate_keys.group_key().to_bytes(), coin_key: coin_keys.group_key().to_bytes().as_ref().to_vec(), }) } CoordinatorMessage::ConfirmKeyPair { context, id } => { let mut txn = self.db.0.txn(); let (substrate_keys, coin_keys) = self.db.confirm_keys(&mut txn, &id); txn.commit(); info!( "Confirmed key pair {} {} from {:?}", hex::encode(substrate_keys.group_key().to_bytes()), hex::encode(coin_keys.group_key().to_bytes()), id ); KeyGenEvent::KeyConfirmed { activation_number: context.coin_latest_block_number.try_into().unwrap(), substrate_keys, coin_keys, } } } } }