use core::{marker::PhantomData, fmt}; use std::collections::{VecDeque, HashMap}; use rand_core::OsRng; use group::GroupEncoding; use frost::{ ThresholdKeys, sign::{Writable, PreprocessMachine, SignMachine, SignatureMachine}, }; use log::{info, debug, warn, error}; use messages::sign::*; use crate::{ Get, DbTxn, Db, coins::{Transaction, Eventuality, Coin}, }; #[derive(Debug)] pub enum SignerEvent { SignedTransaction { id: [u8; 32], tx: >::Id }, ProcessorMessage(ProcessorMessage), } #[derive(Debug)] struct SignerDb(D, PhantomData); impl SignerDb { fn sign_key(dst: &'static [u8], key: impl AsRef<[u8]>) -> Vec { D::key(b"SIGNER", dst, key) } fn completed_key(id: [u8; 32]) -> Vec { Self::sign_key(b"completed", id) } fn complete( txn: &mut D::Transaction<'_>, id: [u8; 32], tx: &>::Id, ) { // Transactions can be completed by multiple signatures // Save every solution in order to be robust let mut existing = txn.get(Self::completed_key(id)).unwrap_or(vec![]); // Don't add this TX if it's already present let tx_len = tx.as_ref().len(); assert_eq!(existing.len() % tx_len, 0); let mut i = 0; while i < existing.len() { if &existing[i .. (i + tx_len)] == tx.as_ref() { return; } i += tx_len; } existing.extend(tx.as_ref()); txn.put(Self::completed_key(id), existing); } fn completed(&self, id: [u8; 32]) -> Option> { self.0.get(Self::completed_key(id)) } fn eventuality_key(id: [u8; 32]) -> Vec { Self::sign_key(b"eventuality", id) } fn save_eventuality(txn: &mut D::Transaction<'_>, id: [u8; 32], eventuality: C::Eventuality) { txn.put(Self::eventuality_key(id), eventuality.serialize()); } fn eventuality(&self, id: [u8; 32]) -> Option { Some( C::Eventuality::read::<&[u8]>(&mut self.0.get(Self::eventuality_key(id))?.as_ref()).unwrap(), ) } fn attempt_key(id: &SignId) -> Vec { Self::sign_key(b"attempt", bincode::serialize(id).unwrap()) } fn attempt(txn: &mut D::Transaction<'_>, id: &SignId) { txn.put(Self::attempt_key(id), []); } fn has_attempt(&mut self, id: &SignId) -> bool { self.0.get(Self::attempt_key(id)).is_some() } fn save_transaction(txn: &mut D::Transaction<'_>, tx: &C::Transaction) { txn.put(Self::sign_key(b"tx", tx.id()), tx.serialize()); } } pub struct Signer { coin: C, db: SignerDb, keys: ThresholdKeys, signable: HashMap<[u8; 32], C::SignableTransaction>, attempt: HashMap<[u8; 32], u32>, preprocessing: HashMap<[u8; 32], ::SignMachine>, #[allow(clippy::type_complexity)] signing: HashMap< [u8; 32], < ::SignMachine as SignMachine >::SignatureMachine, >, pub events: VecDeque>, } impl fmt::Debug for Signer { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt .debug_struct("Signer") .field("coin", &self.coin) .field("signable", &self.signable) .field("attempt", &self.attempt) .finish_non_exhaustive() } } impl Signer { pub fn new(db: D, coin: C, keys: ThresholdKeys) -> Signer { Signer { coin, db: SignerDb(db, PhantomData), keys, signable: HashMap::new(), attempt: HashMap::new(), preprocessing: HashMap::new(), signing: HashMap::new(), events: VecDeque::new(), } } pub async fn keys(&self) -> ThresholdKeys { self.keys.clone() } fn verify_id(&self, id: &SignId) -> Result<(), ()> { // Check the attempt lines up match self.attempt.get(&id.id) { // If we don't have an attempt logged, it's because the coordinator is faulty OR because we // rebooted None => { warn!( "not attempting {} #{}. this is an error if we didn't reboot", hex::encode(id.id), id.attempt ); Err(())?; } Some(attempt) => { if attempt != &id.attempt { warn!( "sent signing data for {} #{} yet we have attempt #{}", hex::encode(id.id), id.attempt, attempt ); Err(())?; } } } Ok(()) } pub async fn eventuality_completion( &mut self, id: [u8; 32], tx_id: &>::Id, ) { if let Some(eventuality) = self.db.eventuality(id) { // Transaction hasn't hit our mempool/was dropped for a different signature // The latter can happen given certain latency conditions/a single malicious signer // In the case of a single malicious signer, they can drag multiple honest // validators down with them, so we unfortunately can't slash on this case let Ok(tx) = self.coin.get_transaction(tx_id).await else { warn!( "a validator claimed {} completed {} yet we didn't have that TX in our mempool", hex::encode(tx_id), hex::encode(id), ); return; }; if self.coin.confirm_completion(&eventuality, &tx) { debug!("eventuality for {} resolved in TX {}", hex::encode(id), hex::encode(tx_id)); // Stop trying to sign for this TX let mut txn = self.db.0.txn(); SignerDb::::save_transaction(&mut txn, &tx); SignerDb::::complete(&mut txn, id, tx_id); txn.commit(); self.signable.remove(&id); self.attempt.remove(&id); self.preprocessing.remove(&id); self.signing.remove(&id); self.events.push_back(SignerEvent::SignedTransaction { id, tx: tx.id() }); } else { warn!( "a validator claimed {} completed {} when it did not", hex::encode(tx_id), hex::encode(id) ); } } else { debug!( "signer {} informed of the completion of {}. {}", hex::encode(self.keys.group_key().to_bytes()), hex::encode(id), "this signer did not have/has already completed that plan", ); } } async fn check_completion(&mut self, id: [u8; 32]) -> bool { if let Some(txs) = self.db.completed(id) { debug!( "SignTransaction/Reattempt order for {}, which we've already completed signing", hex::encode(id) ); // Find the first instance we noted as having completed *and can still get from our node* let mut tx = None; let mut buf = >::Id::default(); let tx_id_len = buf.as_ref().len(); assert_eq!(txs.len() % tx_id_len, 0); for id in 0 .. (txs.len() / tx_id_len) { let start = id * tx_id_len; buf.as_mut().copy_from_slice(&txs[start .. (start + tx_id_len)]); if self.coin.get_transaction(&buf).await.is_ok() { tx = Some(buf); break; } } // Fire the SignedTransaction event again if let Some(tx) = tx { self.events.push_back(SignerEvent::SignedTransaction { id, tx }); } else { warn!("completed signing {} yet couldn't get any of the completing TXs", hex::encode(id)); } true } else { false } } async fn attempt(&mut self, id: [u8; 32], attempt: u32) { if self.check_completion(id).await { return; } // Check if we're already working on this attempt if let Some(curr_attempt) = self.attempt.get(&id) { if curr_attempt >= &attempt { warn!( "told to attempt {} #{} yet we're already working on {}", hex::encode(id), attempt, curr_attempt ); return; } } // Start this attempt // Clone the TX so we don't have an immutable borrow preventing the below mutable actions // (also because we do need an owned tx anyways) let Some(tx) = self.signable.get(&id).cloned() else { warn!("told to attempt a TX we aren't currently signing for"); return; }; // Delete any existing machines self.preprocessing.remove(&id); self.signing.remove(&id); // Update the attempt number self.attempt.insert(id, attempt); let id = SignId { key: self.keys.group_key().to_bytes().as_ref().to_vec(), id, attempt }; info!("signing for {} #{}", hex::encode(id.id), id.attempt); // If we reboot mid-sign, the current design has us abort all signs and wait for latter // attempts/new signing protocols // This is distinct from the DKG which will continue DKG sessions, even on reboot // This is because signing is tolerant of failures of up to 1/3rd of the group // The DKG requires 100% participation // While we could apply similar tricks as the DKG (a seeded RNG) to achieve support for // reboots, it's not worth the complexity when messing up here leaks our secret share // // Despite this, on reboot, we'll get told of active signing items, and may be in this // branch again for something we've already attempted // // Only run if this hasn't already been attempted if self.db.has_attempt(&id) { warn!( "already attempted {} #{}. this is an error if we didn't reboot", hex::encode(id.id), id.attempt ); return; } let mut txn = self.db.0.txn(); SignerDb::::attempt(&mut txn, &id); txn.commit(); // Attempt to create the TX let machine = match self.coin.attempt_send(tx).await { Err(e) => { error!("failed to attempt {}, #{}: {:?}", hex::encode(id.id), id.attempt, e); return; } Ok(machine) => machine, }; let (machine, preprocess) = machine.preprocess(&mut OsRng); self.preprocessing.insert(id.id, machine); // Broadcast our preprocess self.events.push_back(SignerEvent::ProcessorMessage(ProcessorMessage::Preprocess { id, preprocess: preprocess.serialize(), })); } pub async fn sign_transaction( &mut self, id: [u8; 32], tx: C::SignableTransaction, eventuality: C::Eventuality, ) { if self.check_completion(id).await { return; } let mut txn = self.db.0.txn(); SignerDb::::save_eventuality(&mut txn, id, eventuality); txn.commit(); self.signable.insert(id, tx); self.attempt(id, 0).await; } pub async fn handle(&mut self, msg: CoordinatorMessage) { match msg { CoordinatorMessage::Preprocesses { id, mut preprocesses } => { if self.verify_id(&id).is_err() { return; } let machine = match self.preprocessing.remove(&id.id) { // Either rebooted or RPC error, or some invariant None => { warn!( "not preprocessing for {}. this is an error if we didn't reboot", hex::encode(id.id) ); return; } Some(machine) => machine, }; let preprocesses = match preprocesses .drain() .map(|(l, preprocess)| { machine .read_preprocess::<&[u8]>(&mut preprocess.as_ref()) .map(|preprocess| (l, preprocess)) }) .collect::>() { Ok(preprocesses) => preprocesses, Err(e) => todo!("malicious signer: {:?}", e), }; // Use an empty message, as expected of TransactionMachines let (machine, share) = match machine.sign(preprocesses, &[]) { Ok(res) => res, Err(e) => todo!("malicious signer: {:?}", e), }; self.signing.insert(id.id, machine); // Broadcast our share self.events.push_back(SignerEvent::ProcessorMessage(ProcessorMessage::Share { id, share: share.serialize(), })); } CoordinatorMessage::Shares { id, mut shares } => { if self.verify_id(&id).is_err() { return; } let machine = match self.signing.remove(&id.id) { // Rebooted, RPC error, or some invariant None => { // If preprocessing has this ID, it means we were never sent the preprocess by the // coordinator if self.preprocessing.contains_key(&id.id) { panic!("never preprocessed yet signing?"); } warn!( "not preprocessing for {}. this is an error if we didn't reboot", hex::encode(id.id) ); return; } Some(machine) => machine, }; let shares = match shares .drain() .map(|(l, share)| { machine.read_share::<&[u8]>(&mut share.as_ref()).map(|share| (l, share)) }) .collect::>() { Ok(shares) => shares, Err(e) => todo!("malicious signer: {:?}", e), }; let tx = match machine.complete(shares) { Ok(res) => res, Err(e) => todo!("malicious signer: {:?}", e), }; // Save the transaction in case it's needed for recovery let mut txn = self.db.0.txn(); SignerDb::::save_transaction(&mut txn, &tx); let tx_id = tx.id(); SignerDb::::complete(&mut txn, id.id, &tx_id); txn.commit(); // Publish it if let Err(e) = self.coin.publish_transaction(&tx).await { error!("couldn't publish {:?}: {:?}", tx, e); } else { info!("published {}", hex::encode(&tx_id)); } // Stop trying to sign for this TX assert!(self.signable.remove(&id.id).is_some()); assert!(self.attempt.remove(&id.id).is_some()); assert!(self.preprocessing.remove(&id.id).is_none()); assert!(self.signing.remove(&id.id).is_none()); self.events.push_back(SignerEvent::SignedTransaction { id: id.id, tx: tx_id }); } CoordinatorMessage::Reattempt { id } => { self.attempt(id.id, id.attempt).await; } CoordinatorMessage::Completed { key: _, id, tx: mut tx_vec } => { let mut tx = >::Id::default(); if tx.as_ref().len() != tx_vec.len() { tx_vec.truncate(2 * tx.as_ref().len()); warn!( "a validator claimed {} completed {} yet that's not a valid TX ID", hex::encode(&tx), hex::encode(id), ); return; } tx.as_mut().copy_from_slice(&tx_vec); self.eventuality_completion(id, &tx).await; } } } }