#![no_std] use core::{ ops::{Deref, Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign}, borrow::Borrow, iter::{Iterator, Sum} }; use rand_core::RngCore; use digest::{consts::U64, Digest}; use subtle::{Choice, CtOption, ConstantTimeEq, ConditionallySelectable}; pub use curve25519_dalek as dalek; use dalek::{ constants, traits::Identity, scalar::Scalar as DScalar, edwards::{ EdwardsPoint as DEdwardsPoint, EdwardsBasepointTable as DEdwardsBasepointTable, CompressedEdwardsY as DCompressedEdwards }, ristretto::{ RistrettoPoint as DRistrettoPoint, RistrettoBasepointTable as DRistrettoBasepointTable, CompressedRistretto as DCompressedRistretto } }; use ff::{Field, PrimeField, FieldBits, PrimeFieldBits}; use group::{Group, GroupEncoding, prime::PrimeGroup}; // Convert a boolean to a Choice in a *presumably* constant time manner fn choice(value: bool) -> Choice { let bit = value as u8; debug_assert_eq!(bit | 1, 1); Choice::from(bit) } macro_rules! deref_borrow { ($Source: ident, $Target: ident) => { impl Deref for $Source { type Target = $Target; fn deref(&self) -> &Self::Target { &self.0 } } impl Borrow<$Target> for $Source { fn borrow(&self) -> &$Target { &self.0 } } impl Borrow<$Target> for &$Source { fn borrow(&self) -> &$Target { &self.0 } } } } macro_rules! math { ($Value: ident, $Factor: ident, $Product: ident) => { impl Add<$Value> for $Value { type Output = Self; fn add(self, other: $Value) -> Self::Output { Self(self.0 + other.0) } } impl AddAssign for $Value { fn add_assign(&mut self, other: $Value) { self.0 += other.0 } } impl<'a> Add<&'a $Value> for $Value { type Output = Self; fn add(self, other: &'a $Value) -> Self::Output { Self(self.0 + other.0) } } impl<'a> AddAssign<&'a $Value> for $Value { fn add_assign(&mut self, other: &'a $Value) { self.0 += other.0 } } impl Sub<$Value> for $Value { type Output = Self; fn sub(self, other: $Value) -> Self::Output { Self(self.0 - other.0) } } impl SubAssign for $Value { fn sub_assign(&mut self, other: $Value) { self.0 -= other.0 } } impl<'a> Sub<&'a $Value> for $Value { type Output = Self; fn sub(self, other: &'a $Value) -> Self::Output { Self(self.0 - other.0) } } impl<'a> SubAssign<&'a $Value> for $Value { fn sub_assign(&mut self, other: &'a $Value) { self.0 -= other.0 } } impl Neg for $Value { type Output = Self; fn neg(self) -> Self::Output { Self(-self.0) } } impl Mul<$Factor> for $Value { type Output = $Product; fn mul(self, other: $Factor) -> Self::Output { Self(self.0 * other.0) } } impl MulAssign<$Factor> for $Value { fn mul_assign(&mut self, other: $Factor) { self.0 *= other.0 } } impl<'a> Mul<&'a $Factor> for $Value { type Output = Self; fn mul(self, b: &'a $Factor) -> $Product { Self(b.0 * self.0) } } impl<'a> MulAssign<&'a $Factor> for $Value { fn mul_assign(&mut self, other: &'a $Factor) { self.0 *= other.0 } } } } /// Wrapper around the dalek Scalar type #[derive(Clone, Copy, PartialEq, Eq, Debug, Default)] pub struct Scalar(pub DScalar); deref_borrow!(Scalar, DScalar); math!(Scalar, Scalar, Scalar); impl Scalar { /// Perform wide reduction on a 64-byte array to create a Scalar without bias pub fn from_bytes_mod_order_wide(bytes: &[u8; 64]) -> Scalar { Self(DScalar::from_bytes_mod_order_wide(bytes)) } /// Derive a Scalar without bias from a digest via wide reduction pub fn from_hash>(hash: D) -> Scalar { let mut output = [0u8; 64]; output.copy_from_slice(&hash.finalize()); Scalar(DScalar::from_bytes_mod_order_wide(&output)) } } impl ConstantTimeEq for Scalar { fn ct_eq(&self, other: &Self) -> Choice { self.0.ct_eq(&other.0) } } impl ConditionallySelectable for Scalar { fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self { Scalar(DScalar::conditional_select(a, b, choice)) } } impl Field for Scalar { fn random(mut rng: impl RngCore) -> Self { let mut r = [0; 64]; rng.fill_bytes(&mut r); Self(DScalar::from_bytes_mod_order_wide(&r)) } fn zero() -> Self { Self(DScalar::zero()) } fn one() -> Self { Self(DScalar::one()) } fn square(&self) -> Self { *self * self } fn double(&self) -> Self { *self + self } fn invert(&self) -> CtOption { CtOption::new(Self(self.0.invert()), !self.is_zero()) } fn sqrt(&self) -> CtOption { unimplemented!() } fn is_zero(&self) -> Choice { self.0.ct_eq(&DScalar::zero()) } fn cube(&self) -> Self { *self * self * self } fn pow_vartime>(&self, _exp: S) -> Self { unimplemented!() } } impl From for Scalar { fn from(a: u8) -> Scalar { Self(DScalar::from(a)) } } impl From for Scalar { fn from(a: u16) -> Scalar { Self(DScalar::from(a)) } } impl From for Scalar { fn from(a: u32) -> Scalar { Self(DScalar::from(a)) } } impl From for Scalar { fn from(a: u64) -> Scalar { Self(DScalar::from(a)) } } impl PrimeField for Scalar { type Repr = [u8; 32]; const NUM_BITS: u32 = 253; const CAPACITY: u32 = 252; fn from_repr(bytes: [u8; 32]) -> CtOption { let scalar = DScalar::from_canonical_bytes(bytes); // TODO: This unwrap_or isn't constant time, yet do we have an alternative? CtOption::new(Scalar(scalar.unwrap_or(DScalar::zero())), choice(scalar.is_some())) } fn to_repr(&self) -> [u8; 32] { self.0.to_bytes() } const S: u32 = 2; fn is_odd(&self) -> Choice { unimplemented!() } fn multiplicative_generator() -> Self { 2u64.into() } fn root_of_unity() -> Self { unimplemented!() } } impl PrimeFieldBits for Scalar { type ReprBits = [u8; 32]; fn to_le_bits(&self) -> FieldBits { self.to_repr().into() } fn char_le_bits() -> FieldBits { let mut bytes = (Scalar::zero() - Scalar::one()).to_repr(); bytes[0] += 1; debug_assert_eq!(DScalar::from_bytes_mod_order(bytes), DScalar::zero()); bytes.into() } } macro_rules! dalek_group { ( $Point: ident, $DPoint: ident, $torsion_free: expr, $Table: ident, $DTable: ident, $DCompressed: ident, $BASEPOINT_POINT: ident, $BASEPOINT_TABLE: ident ) => { /// Wrapper around the dalek Point type. For Ed25519, this is restricted to the prime subgroup #[derive(Clone, Copy, PartialEq, Eq, Debug)] pub struct $Point(pub $DPoint); deref_borrow!($Point, $DPoint); math!($Point, Scalar, $Point); pub const $BASEPOINT_POINT: $Point = $Point(constants::$BASEPOINT_POINT); impl Sum<$Point> for $Point { fn sum>(iter: I) -> $Point { Self($DPoint::sum(iter)) } } impl<'a> Sum<&'a $Point> for $Point { fn sum>(iter: I) -> $Point { Self($DPoint::sum(iter)) } } impl Group for $Point { type Scalar = Scalar; // Ideally, this would be cryptographically secure, yet that's not a bound on the trait // k256 also does this fn random(rng: impl RngCore) -> Self { &$BASEPOINT_TABLE * Scalar::random(rng) } fn identity() -> Self { Self($DPoint::identity()) } fn generator() -> Self { $BASEPOINT_POINT } fn is_identity(&self) -> Choice { self.0.ct_eq(&$DPoint::identity()) } fn double(&self) -> Self { *self + self } } impl GroupEncoding for $Point { type Repr = [u8; 32]; fn from_bytes(bytes: &Self::Repr) -> CtOption { let decompressed = $DCompressed(*bytes).decompress(); // TODO: Same note on unwrap_or as above let point = decompressed.unwrap_or($DPoint::identity()); CtOption::new($Point(point), choice(decompressed.is_some()) & choice($torsion_free(point))) } fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption { $Point::from_bytes(bytes) } fn to_bytes(&self) -> Self::Repr { self.0.compress().to_bytes() } } impl PrimeGroup for $Point {} /// Wrapper around the dalek Table type, offering efficient multiplication against the /// basepoint pub struct $Table(pub $DTable); deref_borrow!($Table, $DTable); pub const $BASEPOINT_TABLE: $Table = $Table(constants::$BASEPOINT_TABLE); impl Mul for &$Table { type Output = $Point; fn mul(self, b: Scalar) -> $Point { $Point(&b.0 * &self.0) } } }; } dalek_group!( EdwardsPoint, DEdwardsPoint, |point: DEdwardsPoint| point.is_torsion_free(), EdwardsBasepointTable, DEdwardsBasepointTable, DCompressedEdwards, ED25519_BASEPOINT_POINT, ED25519_BASEPOINT_TABLE ); dalek_group!( RistrettoPoint, DRistrettoPoint, |_| true, RistrettoBasepointTable, DRistrettoBasepointTable, DCompressedRistretto, RISTRETTO_BASEPOINT_POINT, RISTRETTO_BASEPOINT_TABLE );