Serai BTC code audit

Cypher Stack*
August 18, 2023

This report describes the findings of a partial code audit of Serai. It reflects
a limited scope provided by Serai and represents a best effort; as with any review
or audit, it cannot guarantee that any protocol or implementation is suitably
secure for a particular use case, nor that the contents of this report reflect all
issues or vulnerabilities that may exist. The author asserts no warranty and
disclaims liability for its use. The author further expresses no endorsement of
Serai or its associated entities. This report has not undergone any further formal
Or peer review.

Contents

I Overview] 2

E

=
)
[@p:
=
g
=
o
=
=
o
=
=
=]
=
=]
0
L 0 |
)

N

2 Scope

3 Findings
[3.T Unnecessary HT TP client creation]

3.3 Connections are checked using block information|
[3.4 _Lack of error differentiation on decoding|
3.5 Assumption of available RPC methods|
3.6 se of unwrap in production|
[3.7 Safe but unbounded loop in offset registration]
3.8 Transaction scanning uses a fallible cast|

3.9 Transaction machine instantiation uses a fallible castl

[3.11 Address generation assumes correct generation|
13.12 Offsets and addresses are not bijective]

O UL UL UL UL UL i W W ww

*https://cypherstack.com

https://cypherstack.com

1 Overview

1.1 Introduction

Serai is a distributed exchange protocol and Rust implementation. This report
represents an audit of specific areas of underlying cryptographic libraries and
functionality in the Serai codebase.

Serai and Cypher Stack identified the following goals for this audit:

e Assert that implementations of external specifications or protocols are
done correctly

e Determine if malicious or unintended edge cases can be exploited
e Identify cases where the code may panic unexpectedly

e Note situations where documentation is insufficient to convey intent or
design

e Ensure that secret data is handled as safely as is feasible with respect to
memory clearing and constant-time operations

e Identify areas of the implementation where efficiency gains are possible
and reasonable

e Determine the extent to which the implementation contains relevant and
comprehensive tests

1.2 Summary of findings

As with a previous audit of Serai code, we find that the implementation is well
designed and carefully written with secure deployment in mind. We did not
identify any findings of particular immediate concern.

Consequently, the findings described in this report primarily identify recom-
mendations for improvement. These deal with inconsistencies, documentation,
tests, or areas of the codebase where fixes or changes could mitigate future
issues.

However, we carefully note that we do not assign severity ratings to the
issues contained herein. Such ratings are often subjective, and typically depend
on the ease or difficulty of triggering specific behavior, which can be challenging
to assess in a consistent way.

2 Scope

The scope of this audit was limited to the coins/bitcoin directory of the
bitcoin-audit branch of the Serai repository at a specific commitﬂ

Thttps://github.com/serai-dex/serai/tree/21026136bd0c7f341ae93f08e6a0bb15fb9b
2501

https://github.com/serai-dex/serai/tree/21026136bd0c7f341ae93f08e6a0bb15fb9b250f
https://github.com/serai-dex/serai/tree/21026136bd0c7f341ae93f08e6a0bb15fb9b250f

Review of this directory entailed determining if it implements Serai- and
Bitcoin-related cryptographic code correctly, and if it presents transaction-
related issues as part of its implementation.

3 Findings

In the subsequent findings, we include actions taken and responses provided by
Serai in response to an initial version of this report. Where listed, commits based
on these actions refer to the bitcoin-audit repository branch, and function as
hyperlinks if supported by your document reader software.

3.1 Unnecessary HTTP client creation

When making an RPC call, the implementation creates a new HTTP Client
for the call. This seems unnecessary and could be inefficient, as sharing a single
client across multiple requests could allow for connection pooling if supported.
Recommended fix is to refactor in order to reuse a single Client if feasible.
Action: Addressed in commit |c878d38, which refactors to reuse a Client
within an Rpc struct.

3.2 Lack of HTTP error differentiation

When making RPC calls and receiving responses, there is no differentiation
between errors returned during the associated HTTP request and those returned
on receipt of the response. It may be useful to either propagate detailed error
information for debugging or handling purposes, or to simply define distinct
request and response errors.

Recommended fix is to return differentiated errors, unless the single error is
intentional to mitigate side channels.

Action: Determined to be unnecessary due to a desire not to rely on library-
specific error handling.

3.3 Connections are checked using block information

When creating a new RPC client, the connection is checked for validity by
fetching the latest block number from the server and discarding the result.
However, failure of this process may not adequately differentate to the user
between connectivity problems and internal node status, such as being online
but not fully synchronized to the Bitcoin network.

Recommended fix is to consider a more robust RPC server and node health
check, if feasible.

Action: Addressed in commit 7fabd29, which queries for support of a set
of required methods.

https://github.com/serai-dex/serai/commit/c878d38c606e9add77ac1d1a058060accd1a51c8
https://github.com/serai-dex/serai/commit/7fa5d291b8c60da1c26525b45f02610180bc90c8

3.4 Lack of error differentiation on decoding

When decoding response data, the implementation often generically maps vari-
ous decoding errors to a single InvalidResponse error. This may not properly
capture the difference between high-level encoding errors and lower-level errors
within responses, which could hinder debugging.

Recommended fix is to consider more error differentiation on response de-
coding.

Action: Addressed in commit [3480fc5| which includes more fine-grained
error reporting.

3.5 Assumption of available RPC methods

The implementation assumes that the getblock, sendrawtransaction, and
getrawtransaction RPC calls are enabled and available on the server node.
This is not guaranteed, and depends on the node configuration. Relying on
generic failure responses may be insufficient to determine these capabilities.

Recommended fix is to consider testing for call availability when instantiat-
ing the RPC client.

Action: Addressed in commit [7fa5d29, which queries for support of a set
of required methods.

3.6 Use of unwrap in production

The implementation uses unwrap in non-test production code where logic indi-
cates a result must be valid. The use of unwrap in this way is largely a matter
of developer preference, and is not inherently dangerous or unsafe. However,
when it is used, it may be preferable to use expect instead, in order to admit
more controlled and actionable debugging messages. This can also help to avoid
edge cases where non-public data could be leaked during an unwrap execution.

Recommended fix is to consider uses of non-test unwrap, and further consider
replacing with expect where helpful.

Action: Addressed in commits|d75115c| and 677b9b6), with remaining uses
deemed safe.

3.7 Safe but unbounded loop in offset registration

When constructing an address using an offset, the implementation increments
the candidate offset and attempts to generate a valid address with it, addition-
ally checking that the offset is not already registered.

Assuming that the address generation callee operates correctly, the loop is
guaranteed to terminate since incrementing must yield a group element corre-
sponding to a valid address. If the callee were to malfunction (which is not an
assumption here), it could be possible that the loop does not terminate.

Recommendation is to add a brief comment explaining why the loop must
terminate.

Action: Addressed in commit fa1b569), which adds such a comment.

https://github.com/serai-dex/serai/commit/3480fc5e166d5d4c2b7cfcbfe086534997857770
https://github.com/serai-dex/serai/commit/7fa5d291b8c60da1c26525b45f02610180bc90c8
https://github.com/serai-dex/serai/commit/d75115ce1396949e17c87be6ffab886c2ee5a975
https://github.com/serai-dex/serai/commit/677b9b681f5e2819fe34599beb0947adc22afabd
https://github.com/serai-dex/serai/commit/fa1b569b78890cc5edb22dce91f08acd64cef854

3.8 Transaction scanning uses a fallible cast

When scanning a transaction, the implementation iterates over its outputs and
casts the output index from usize to u32 using an unwrap. While it should
not be possible to construct a valid transaction with such a structure that could
trigger a panic, it is not clear whether a malicious node could trigger it in a way
that is not caught by the parser.

Recommendation is to check for this case and simply fail to include any
failure cases in the returned vector of received outputs.

Action: Addressed in commit 677b9b6), which performs a check.

3.9 Transaction machine instantiation uses a fallible cast

When setting up a transaction machine for a signable transaction, the imple-
mentation iterates over the transaction’s inputs and casts the input index from
usize to u32 using an unwrap. While it should not be possible to construct a
valid transaction with such a structure that could trigger a panic, it is not clear
whether a malicious node could trigger it in a way that is not caught by the
parser.

Recommendation is to check for this case and simply fail to produce the
transaction machine if it is triggered.

Action: Addressed in commit 677b9b6), which performs a check.

3.10 Offset addresses use a hardcoded network

When registering address offsets, the implementation generates the addresses
using a hardcoded network. This may limit functionality for use in other net-
works, especially for test cases where inadvertent use of a production network
could be dangerous or risk fund loss.

Action: Addressed in commit f66fe3cl, which generalizes networks.

3.11 Address generation assumes correct generation

When generating a Taproot address from a key, the implementations uses library
functions that assume the key has undergone any necessary “tweak” to ensure
safe use in practice. While the implementation uses it safely, the generator
function itself is public and does not include documentation indicating what
preparation (if any) should be done to the input key.

Recommendation is to improve the documentation for Taproot address gen-
eration, and consider limiting the function visibility if feasible to avoid uninten-
tional misuse.

Action: Addressed in commit 6£9d02f], which adds such comments.

3.12 Offsets and addresses are not bijective

When constructing an offset address, the implementation attempts to apply the
requested scalar offset, incrementing if necessary to produce an unused valid

https://github.com/serai-dex/serai/commit/677b9b681f5e2819fe34599beb0947adc22afabd
https://github.com/serai-dex/serai/commit/677b9b681f5e2819fe34599beb0947adc22afabd
https://github.com/serai-dex/serai/commit/f66fe3c1cb56f90f9d1f1ba8c4d2ff4dc6fa9768
https://github.com/serai-dex/serai/commit/6f9d02fdf83e426b0a4a0df9c851de5911067a5e

address. This design implies that there is a many-to-one mapping between
offsets and their corresponding addresses. While this is not inherently unsafe or
incorrect, even with the existing documentation, a caller might unintentionally
make this assumption as part of a future design or protocol.
Recommendation is to improve the documentation relating to this property.
Action: Addressed in commit df67b7d, which adds such comments.

3.13 Dust constant is incorrect

The implementation checks candidate output data to ensure that values are
above a constant dust limit that would cause nodes not to relay the resulting
transaction.

This constant is set to 674, with a link to external Bitcoin transaction test
source code. However, this reference test appears to be a non-standard case
that uses a custom fee rate. Closer examination of the transaction tests and
associated constants indicates that nodes using the default relay fee settings
will use a dust limit value of 546. It may be the case that the implementation’s
higher limit is intentional, as the reference test discusses the effects of rounding.

Recommendation is to determine if the dust constant is set as expected, and
to change it if not.

Action: Addressed in commits 1eb3b36| and 5121ca7, which address the
handling of fees.

https://github.com/serai-dex/serai/commit/df67b7d94c56ef8f75994e02885bb5c78314ef13
https://github.com/serai-dex/serai/commit/1eb3b364f46e003b92baed89dcdef3e4878c79aa
https://github.com/serai-dex/serai/commit/5121ca75199dff7bd34230880a1fdd793012068c

	Overview
	Introduction
	Summary of findings

	Scope
	Findings
	Unnecessary HTTP client creation
	Lack of HTTP error differentiation
	Connections are checked using block information
	Lack of error differentiation on decoding
	Assumption of available RPC methods
	Use of unwrap in production
	Safe but unbounded loop in offset registration
	Transaction scanning uses a fallible cast
	Transaction machine instantiation uses a fallible cast
	Offset addresses use a hardcoded network
	Address generation assumes correct generation
	Offsets and addresses are not bijective
	Dust constant is incorrect

