use std::collections::HashMap; use rand_core::{RngCore, OsRng}; use ciphersuite::group::GroupEncoding; use frost::{ Participant, ThresholdKeys, dkg::tests::{key_gen, clone_without}, }; use serai_db::{DbTxn, Db, MemDb}; use messages::sign::*; use crate::{ Payment, Plan, networks::{Output, Transaction, Network}, signer::{SignerEvent, Signer}, }; #[allow(clippy::type_complexity)] pub async fn sign( network: N, mut keys_txs: HashMap< Participant, (ThresholdKeys, (N::SignableTransaction, N::Eventuality)), >, ) -> >::Id { let actual_id = SignId { key: keys_txs[&Participant::new(1).unwrap()].0.group_key().to_bytes().as_ref().to_vec(), id: [0xaa; 32], attempt: 0, }; let mut keys = HashMap::new(); let mut txs = HashMap::new(); for (i, (these_keys, this_tx)) in keys_txs.drain() { keys.insert(i, these_keys); txs.insert(i, this_tx); } let mut signers = HashMap::new(); let mut dbs = HashMap::new(); let mut t = 0; for i in 1 ..= keys.len() { let i = Participant::new(u16::try_from(i).unwrap()).unwrap(); let keys = keys.remove(&i).unwrap(); t = keys.params().t(); signers.insert(i, Signer::<_, MemDb>::new(network.clone(), keys)); dbs.insert(i, MemDb::new()); } drop(keys); for i in 1 ..= signers.len() { let i = Participant::new(u16::try_from(i).unwrap()).unwrap(); let (tx, eventuality) = txs.remove(&i).unwrap(); let mut txn = dbs.get_mut(&i).unwrap().txn(); signers.get_mut(&i).unwrap().sign_transaction(&mut txn, actual_id.id, tx, eventuality).await; txn.commit(); } let mut signing_set = vec![]; while signing_set.len() < usize::from(t) { let candidate = Participant::new( u16::try_from((OsRng.next_u64() % u64::try_from(signers.len()).unwrap()) + 1).unwrap(), ) .unwrap(); if signing_set.contains(&candidate) { continue; } signing_set.push(candidate); } // All participants should emit a preprocess let mut preprocesses = HashMap::new(); for i in 1 ..= signers.len() { let i = Participant::new(u16::try_from(i).unwrap()).unwrap(); if let SignerEvent::ProcessorMessage(ProcessorMessage::Preprocess { id, preprocess }) = signers.get_mut(&i).unwrap().events.pop_front().unwrap() { assert_eq!(id, actual_id); if signing_set.contains(&i) { preprocesses.insert(i, preprocess); } } else { panic!("didn't get preprocess back"); } } let mut shares = HashMap::new(); for i in &signing_set { let mut txn = dbs.get_mut(i).unwrap().txn(); signers .get_mut(i) .unwrap() .handle( &mut txn, CoordinatorMessage::Preprocesses { id: actual_id.clone(), preprocesses: clone_without(&preprocesses, i), }, ) .await; txn.commit(); if let SignerEvent::ProcessorMessage(ProcessorMessage::Share { id, share }) = signers.get_mut(i).unwrap().events.pop_front().unwrap() { assert_eq!(id, actual_id); shares.insert(*i, share); } else { panic!("didn't get share back"); } } let mut tx_id = None; for i in &signing_set { let mut txn = dbs.get_mut(i).unwrap().txn(); signers .get_mut(i) .unwrap() .handle( &mut txn, CoordinatorMessage::Shares { id: actual_id.clone(), shares: clone_without(&shares, i) }, ) .await; txn.commit(); if let SignerEvent::SignedTransaction { id, tx } = signers.get_mut(i).unwrap().events.pop_front().unwrap() { assert_eq!(id, actual_id.id); if tx_id.is_none() { tx_id = Some(tx.clone()); } assert_eq!(tx_id, Some(tx)); } else { panic!("didn't get TX back"); } } // Make sure there's no events left for (_, mut signer) in signers.drain() { assert!(signer.events.pop_front().is_none()); } tx_id.unwrap() } pub async fn test_signer(network: N) { let mut keys = key_gen(&mut OsRng); for (_, keys) in keys.iter_mut() { N::tweak_keys(keys); } let key = keys[&Participant::new(1).unwrap()].group_key(); let outputs = network.get_outputs(&network.test_send(N::address(key)).await, key).await; let sync_block = network.get_latest_block_number().await.unwrap() - N::CONFIRMATIONS; let amount = 2 * N::DUST; let mut keys_txs = HashMap::new(); let mut eventualities = vec![]; for (i, keys) in keys.drain() { let (signable, eventuality) = network .prepare_send( sync_block, Plan { key, inputs: outputs.clone(), payments: vec![Payment { address: N::address(key), data: None, amount }], change: Some(N::change_address(key)), }, 0, ) .await .unwrap() .tx .unwrap(); eventualities.push(eventuality.clone()); keys_txs.insert(i, (keys, (signable, eventuality))); } // The signer may not publish the TX if it has a connection error // It doesn't fail in this case let txid = sign(network.clone(), keys_txs).await; let tx = network.get_transaction(&txid).await.unwrap(); assert_eq!(tx.id(), txid); // Mine a block, and scan it, to ensure that the TX actually made it on chain network.mine_block().await; let outputs = network .get_outputs( &network.get_block(network.get_latest_block_number().await.unwrap()).await.unwrap(), key, ) .await; assert_eq!(outputs.len(), 2); // Adjust the amount for the fees let amount = amount - tx.fee(&network).await; // Check either output since Monero will randomize its output order assert!((outputs[0].amount() == amount) || (outputs[1].amount() == amount)); // Check the eventualities pass for eventuality in eventualities { assert!(network.confirm_completion(&eventuality, &tx)); } }