
Serai code audit

Cypher Stack∗

March 16, 2023

This report describes the findings of a partial code audit of Serai. It reflects
a limited scope provided by Serai and represents a best effort; as with any review
or audit, it cannot guarantee that any protocol or implementation is suitably
secure for a particular use case, nor that the contents of this report reflect all
issues or vulnerabilities that may exist. The author asserts no warranty and
disclaims liability for its use. The author further expresses no endorsement of
Serai or its associated entities. This report has not undergone any further formal
or peer review.

Contents

1 Overview 3
1.1 Introduction . 3
1.2 Summary of findings . 3

2 Scope 4
2.1 crypto/ciphersuite . 4
2.2 crypto/dalek-ff-group . 4
2.3 crypto/dkg . 4
2.4 crypto/dleq . 5
2.5 crypto/ff-group-tests . 5
2.6 crypto/frost . 5
2.7 crypto/multiexp . 5
2.8 crypto/schnorr . 5
2.9 crypto/transcript . 6

3 Findings 6
3.1 crypto/ciphersuite . 6

3.1.1 Incomplete documentation for hash-to-field constants . . . 6
3.1.2 Duplicated domain separation tag overflow handling . . . 6
3.1.3 Unnecessary wrapping addition 7
3.1.4 Hashing to scalar may collide 7

3.2 crypto/dalek-ff-group . 7

∗https://cypherstack.com

1

https://cypherstack.com

3.2.1 Constants are unsourced and untested 7
3.2.2 Non-standard group element randomization 8
3.2.3 Group element randomization can yield identity 8
3.2.4 Unused and public field constants 8
3.2.5 Missing documentation 9

3.3 crypto/dkg . 9
3.3.1 Unnecessary fallible type conversion in Lagrange coefficients 9
3.3.2 Unnecessary stream cipher nonce 9
3.3.3 Lack of low-level guards against polynomial evaluation at

zero . 10
3.3.4 Incomplete FROST session-specific domain separation . . 10
3.3.5 Incorrect documentation 11

3.4 crypto/dleq . 11
3.4.1 Security proof . 11
3.4.2 Incomplete documentation 13
3.4.3 Proving system functionality may be combined 13
3.4.4 Prover does not check input consistency 13

3.5 crypto/ff-group-tests . 14
3.5.1 Cyclic test structure . 14
3.5.2 Tests are incomplete . 14

3.6 crypto/frost . 16
3.6.1 Ambiguous handling of invalid nonce generation 16
3.6.2 Nonce generation is not checked in test vectors 16
3.6.3 Nonce commitment encoding is not checked in test vectors 17
3.6.4 Inconsistent use of RFC 8032 test vectors 17
3.6.5 Signature test vectors are unsourced 17
3.6.6 Incomplete documentation and terminology for nonces . . 17
3.6.7 Unsafe transcript is public 18
3.6.8 Offset splitting can be simplified 18
3.6.9 Insufficient tests . 19

3.7 crypto/multiexp . 20
3.7.1 Code duplication . 20
3.7.2 Denial-of-service risk in blame 20
3.7.3 Incomplete tests . 21
3.7.4 Variable-time input data is assumed not to be secret . . . 21
3.7.5 Incomplete documentation 21
3.7.6 Inefficiency in constant-time algorithms 21
3.7.7 Inefficiency in variable-time Pippenger algorithm 22

3.8 crypto/schnorr . 22
3.8.1 Incomplete cross-compatibility 22
3.8.2 Incomplete tests . 23
3.8.3 Risk of unsafe challenges 23
3.8.4 Incorrect half-aggregated signature implementation 23
3.8.5 Possible non-uniform sampling of aggregated signature

hash functions . 24
3.8.6 Unclear aggregation coefficient security target 24

2

3.9 crypto/transcript . 25
3.9.1 Malfunctioning digest trait bound 25
3.9.2 Possibly confusing randomization seed function 26
3.9.3 Possible domain separation conflict in Merlin wrapper . . 26
3.9.4 No tests exist . 26

3.10 crypto-tweaks . 26
3.10.1 Incomplete handling of intended constant-time operations 27
3.10.2 Indirect transcript testing 27

1 Overview

1.1 Introduction

Serai is a distributed exchange protocol and Rust implementation. This report
represents an audit of specific areas of underlying cryptographic libraries and
functionality in the Serai codebase.

Serai and Cypher Stack identified the following goals for this audit:

• Assert that implementations of external specifications or protocols are
done correctly

• Determine if malicious or unintended edge cases can be exploited

• Identify cases where the code may panic unexpectedly

• Note situations where documentation is insufficient to convey intent or
design

• Ensure that secret data is handled as safely as is feasible with respect to
memory clearing and constant-time operations

• Identify areas of the implementation where efficiency gains are possible
and reasonable

• Determine the extent to which the implementation contains relevant and
comprehensive tests

1.2 Summary of findings

Overall, the implementation is well designed and carefully written with secure
deployment in mind. We did not identify any findings of particular immediate
concern.

Consequently, the findings described in this report primarily identify recom-
mendations for improvement. These deal with inconsistencies, documentation,
tests, or areas of the codebase where fixes or changes could mitigate future
issues.

However, we carefully note that we do not assign severity ratings to the
issues contained herein. Such ratings are often subjective, and typically depend

3

on the ease or difficulty of triggering specific behavior, which can be challenging
to assess in a consistent way.

2 Scope

Specific directories within the codebase are in scope for this audit. Each listed
directory is given relative to the repository tree at a specific commit on the
crypto-audit branch of the Serai repository1. Serai issued fixes via subsequent
commits on the crypto-audit branch, which we discuss as part of our findings.

Separately, later updates leading to a specific commit on the crypto-tweaks
branch of the repository2 were reviewed, after which another fix was issued via
a commit on the crypto-tweaks branch, as discussed later.

2.1 crypto/ciphersuite

Review of this directory should determine if it provides correct wrappers for
particular elliptic curves. The ed448 implementation is out of scope.

Additionally, it should be determined if the hash-to-field implementations
match intended designs.

• For ristretto255 it should match an IETF draft specification3 instanti-
ated with SHA2-512

• For ed25519 it should match IETF RFC 80324

• For secp256k1 and P-256, it should match an IETF draft specification5

locked to a single element without DST validation

2.2 crypto/dalek-ff-group

Review of this directory should determine if it is a valid curve25519-dalek

wrapper for ff/group bindings.

2.3 crypto/dkg

Review of this directory should determine if it is a correct implementation of
the key generation protocol defined in the FROST preprint6.

It should additionally determine if the added encryption functionality and
blame design appear to be implementated correctly and safely. Authenticated

1https://github.com/serai-dex/serai/tree/eeca440fa7faf5c6b3c72c225bb18f256e34

e0bd
2https://github.com/serai-dex/serai/tree/62dfc63532f1dbd97ea1273ae9ac9f0761e9

4ac8
3https://www.ietf.org/archive/id/draft-irtf-cfrg-ristretto255-decaf448-05.ht

ml#name-scalar-field
4https://datatracker.ietf.org/doc/html/rfc8032
5https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16
6https://eprint.iacr.org/2020/852

4

https://github.com/serai-dex/serai/tree/eeca440fa7faf5c6b3c72c225bb18f256e34e0bd
https://github.com/serai-dex/serai/tree/eeca440fa7faf5c6b3c72c225bb18f256e34e0bd
https://github.com/serai-dex/serai/tree/62dfc63532f1dbd97ea1273ae9ac9f0761e94ac8
https://github.com/serai-dex/serai/tree/62dfc63532f1dbd97ea1273ae9ac9f0761e94ac8
https://www.ietf.org/archive/id/draft-irtf-cfrg-ristretto255-decaf448-05.html#name-scalar-field
https://www.ietf.org/archive/id/draft-irtf-cfrg-ristretto255-decaf448-05.html#name-scalar-field
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16
https://eprint.iacr.org/2020/852

encryption is specifically not addressed here. There is documentation7 with
informal design intent.

2.4 crypto/dleq

Review of this directory should determine if it is a correct implementation of the
discrete logarithm equality proof defined in a paper by Chaum and Pedersen8.

It should also determine if the included merged-challenge proof for multiple
statements is implemented correctly.

The cross-group proving system is out of scope.

2.5 crypto/ff-group-tests

Review of this directory should determine if it represents relevant and correct
tests of generic field and group functionality.

2.6 crypto/frost

Review of this directory should determine if it is a correct implementation of
version 12 of the FROST IETF draft9. It should additionally determine if
the extensions described in the documentation10 are implemented correctly and
safely.

2.7 crypto/multiexp

Review of this directory should determine if it is a correct implementation of
Straus- and Pippenger-type multiscalar multiplication algorithms. It should ad-
ditionally determine if the batch verification is implemented correctly and safely.
For the Straus-type algorithm, the information at doi:10.2307/231092911 may
be useful. For the Pippenger-type algorithm, the information in this article12

may be useful.

2.8 crypto/schnorr

Review of this directory should determine if it is a correct implementation of
standard Schnorr signatures, using the approach from IETF RFC 803213 with
a modular challenge function. It should additionally determine if the batch

7https://github.com/serai-dex/serai/blob/develop/docs/cryptography/Distribute

d%20Key%20Generation.md
8https://chaum.com/wp-content/uploads/2021/12/Wallet_Databases.pdf
9https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-12.html

10https://github.com/serai-dex/serai/blob/develop/docs/cryptography/FROST.md
11https://doi.org/10.2307/2310929
12https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1141&context=h

mc_fac_pub
13https://datatracker.ietf.org/doc/html/rfc8032

5

https://github.com/serai-dex/serai/blob/develop/docs/cryptography/Distributed%20Key%20Generation.md
https://github.com/serai-dex/serai/blob/develop/docs/cryptography/Distributed%20Key%20Generation.md
https://chaum.com/wp-content/uploads/2021/12/Wallet_Databases.pdf
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-12.html
https://github.com/serai-dex/serai/blob/develop/docs/cryptography/FROST.md
https://doi.org/10.2307/2310929
https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1141&context=hmc_fac_pub
https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1141&context=hmc_fac_pub
https://datatracker.ietf.org/doc/html/rfc8032

verification implementation is correct and secure, and if the aggregation matches
the half-aggregation technique from this preprint14.

2.9 crypto/transcript

Review of this directory should determine if it appears to represent safe designs
for transcripting. There are no particular specifications for these designs.

More specifically, all designs are intended to represent reasonable behavior
for secure transcripts to be uses in Fiat-Shamir applications. The provided
RecommendedTranscript design is additionally intended to be secure against
an attack where an adversary in possession of a transcript challenge is able to
produce a valid continuation of the underlying transcript. The more general
DigestTranscript design is intended to be secure against hash-based attacks
to the same degree as the underlying hash function with which it is instantiated.

3 Findings

In the subsequent findings, we include actions taken and responses provided by
Serai in response to an initial version of this report. Where listed, commits based
on these actions refer to the crypto-audit repository branch, and function as
hyperlinks if supported by your document reader software.

3.1 crypto/ciphersuite

This crate provides wrappers for elliptic curve groups, their associated scalar
fields, and hashing operations.

3.1.1 Incomplete documentation for hash-to-field constants

The implementation for the secp256k1 and P-256 elliptic curve groups follows
an IETF draft specification15 for hashing uniformly to each curve’s scalar field.
Doing so requires careful configuration of constants relating to the desired se-
curity level and scalar field modulus. While the implementation sets up these
constants correctly, it does so partly by the use of “magic numbers” and the use
of big-integer structures whose interaction is not documented.

Recommended fix is to document the derivation of these constants and their
relationship to each other for improved clarity.

Action: Addressed in commit 18ac806.

3.1.2 Duplicated domain separation tag overflow handling

When hashing to the scalar field of the secp256k1 and P-256 elliptic curve
groups, the implementation first hashes a domain separation tag with an IETF-
specified prefix, and then uses this hash output if the tag’s length exceeds 255

14https://eprint.iacr.org/2021/350
15https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html

6

https://github.com/serai-dex/serai/commit/18ac80671ff27932c8b7b0ca1a4fea14532ea7a8
https://eprint.iacr.org/2021/350
https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html

bytes. In addition to performing this initial hash even if the tag’s length does not
overflow, the functionality is unnecessary to implement. The elliptic curve

library, which is used for internal hashing operations, includes functionality via
Domain::xmd that performs this hashing, and does so only when needed.

Recommended fix is to refactor the implementation to use this library’s
functionality for domain separation tag overflow handling.

Action: Addressed in commit ac0f5e9.

3.1.3 Unnecessary wrapping addition

When computing the modulus for reduction of the output used for hashing to the
scalar field of the secp256k1 and P-256 elliptic curve groups, the implemen-
tation performs a wrapping addition within a U386 big-integer instantiation.
Because of the padding and length limits used in this instantiation, it is not
possible for the wrapping addition to overflow and wrap; as a result, using a
checked addition may suffice and be more efficient.

Recommended fix is to consider the use of a checked addition for this purpose.
However, its use should be carefully documented to avoid unsafe behavior that
may be caused by future changes.

Action: Addressed in commit cb4ce5e.

3.1.4 Hashing to scalar may collide

The implementation’s hash-to-scalar functionality for the ristretto255 and
ed25519 elliptic curve groups uses a modular reduction of domain-separated
SHA-512 output. However, the domain separation tag and input data are di-
rectly concatenated when hashed; the lack of tag length prepending (or equiva-
lent functionality) means that distinct combinations of tag and input data can
collide. This is required for compliance with some signature standards, but may
be unsafe in other protocols.

Recommended fix is to carefully document this behavior to avoid misuse.
Action: Addressed in commit 686a5ee.

3.2 crypto/dalek-ff-group

This crate implements relevant group and field traits from the group and ff

crates for the ristretto255 and ed25519 elliptic curve groups (and their asso-
ciated scalar fields).

3.2.1 Constants are unsourced and untested

The implementation defines several constants relevant to its underlying group
and field structures. Most of these are effectively ported directly from the
curve25519-dalek library, albeit with type or format differences. However,
these constants do not have documented references to their library equivalents,
making it more challenging to identify and confirm their accuracy.

7

https://github.com/serai-dex/serai/commit/ac0f5e9b2d7a9ab6a61271742696f748ba4c2806
https://github.com/serai-dex/serai/commit/cb4ce5e354c1e36ef0ff2425e82b7fdbeeb971e9
https://github.com/serai-dex/serai/commit/686a5ee36425e119b1e762c88e70811c4755eaec

Further, there are no tests present in the crate that assert the correctness
of these ported constants. Instead, the implementation appears to assume that
its broader test crate, which contains general tests for the ff and group traits
across several elliptic curve groups, will identify any issues with the constants.
This is not guaranteeed.

A minimum recommended fix is to document the specific source of group
and field constants. A more comprehensive fix is to add tests that directly as-
sert the correctness of ported constants against their curve25519-dalek library
equivalents. Finally, an even more comprehensive is to generate these constants
at compile time directly from their library equivalents.

Action: Addressed in commit 40a6672.

3.2.2 Non-standard group element randomization

The implementation uses a single generic design for producing random group
elements in both the ristretto255 and (prime-order subgroup of the) ed25519
elliiptic curve groups. It uses a non-standard random byte manipulation ap-
proach and attempts to decompress it as a group element byte representation,
additionally checking for torsion. It is unclear if this approach is guaranteed to
yield a uniform group element distribution.

Further, while the general approach of using rejection sampling on a com-
pressed Edwards point via its y-coordinate is standard, it is not standard for
ristretto255. The underlying curve25519-dalek library already contains
functionality for transforming uniform byte data to group elements via a dual
application of an Elligator mapping.

Recommended fix is to separately implement group element randomization:
use standard rejection sampling without byte manipulation for ed25519, and
use the underlying library functionality for ristretto255.

Action: Addressed in commit d929a8d using a hashing method for consis-
tent implementation.

3.2.3 Group element randomization can yield identity

The implementation’s design for group element randomization can yield the
identity element for both ed25519 and ristretto255. However, the Group

trait specification for the random function requires that the identity element
not be produced.

Recommended fix is to check for and reject the identity element in each
group’s randomization functionality.

Action: Addressed in commit 74647b1.

3.2.4 Unused and public field constants

The field implementation contains a public constant EDWARDS D that is unused.
It may have been intended for use by an internal test that was not added, or
intended for use by implementers.

8

https://github.com/serai-dex/serai/commit/40a6672547c371c1bc8e624bea1844aeb4dbceb8
https://github.com/serai-dex/serai/commit/d929a8d96ecd066b8df88b64b9a9e8cc8bf09958
https://github.com/serai-dex/serai/commit/74647b1b5273cad7f9fd2dfe048257164cba8275

On a related note, the constants MOD 3 8 and MOD 5 8, which are used inter-
nally, are also public.

If the constants are not intended for external use outside the trait require-
ments, recommended fixes are to remove the unused constant and make the
others private.

Action: Addressed in commit 40a6672.

3.2.5 Missing documentation

The field implementation’s sqrt ratio i function is not documented, and is
not a trait requirement.

Recommended fix is to add documentation.
Action: Addressed in commit 40a6672.

3.3 crypto/dkg

This crate provides a framework for distributed key generation intended for
use in threshold signing operations. It also provides an instantiation of the
framework for FROST key generation.

3.3.1 Unnecessary fallible type conversion in Lagrange coefficients

When computing Lagrange coefficients, the implementation uses a try from

and unwrap approach to convert u16 indexes to u64 before being converted to
scalar field elements as part of the coefficient computation. This is unnecessary,
as the operation is infallible.

Recommended fix is to use from to perform the conversion instead.
Action: Addressed in commit d72c4ca.

3.3.2 Unnecessary stream cipher nonce

When encrypting data for other participants, the implementation uses a tran-
script as a key derivation function to generate a ChaCha20 key and nonce. While
the key and nonce are uniformly distributed due to the transcript design, they
are deterministic from an underlying Diffie-Hellman shared secret bound to the
transcript. In particular, this means that any transcript using the same initial
binding will produce the same key and nonce, negating the effect of the nonce
altogether. It is equally safe in this case to use a fixed nonce (for example, zero).

Additionally, it should be carefully documented that with either a deter-
ministic or fixed nonce, a Diffie-Hellman shared secret must never be reused.
The implementation uses an ephemeral key to derive a new shared secret on
each call to the encrypt function, and is therefore safe; however, updating the
documentation for the underlying cipher function call may avoid unsafe use
arising from future updates.

Recommended changes are to use a fixed nonce, and update the cipher

function documentation.
Action: Addressed in commit 8bee626.

9

https://github.com/serai-dex/serai/commit/40a6672547c371c1bc8e624bea1844aeb4dbceb8
https://github.com/serai-dex/serai/commit/40a6672547c371c1bc8e624bea1844aeb4dbceb8
https://github.com/serai-dex/serai/commit/d72c4ca4f764d4aed745e75b5c1a93ad120fd880
https://github.com/serai-dex/serai/commit/8bee62609caf6d127aed6a0f338c57f7b473f2f9

3.3.3 Lack of low-level guards against polynomial evaluation at zero

When performing Shamir-based secret distribution where a (share of a) secret
value is encoded as the evaluation of a polynomial with random coefficients at
zero, it is essential never to reveal this evaluation unintentionally. Violations of
this principle have occurred in high-profile open implementations16 in various
ways.

While the implementation of FROST distributed key generation, which uses
this kind of secret encoding, is careful to ensure that higher-level functionality
never uses zero as a participant index for polynomial evaluation, there is an
engineering risk of mistakenly doing so in future updates. Indeed, participant
indexing for evaluation is done via range looping, and it is well-known program-
mer lore that incorrect loop indexing bounds can be easy to miss. Further, it
could be possible that a misbehaving participant is able to trick an honest player
into performing such an evaluation if a future update made this exploitable (to
be clear, we have not identified such a risk in the implementation).

One mitigation may be to ensure that polynomial evaluation, which is done
using Horner’s method in the polynomial function, provides an assertion that
the provided partipant index be nonzero. Since this is the lowest level at which
this index could be checked, such a check would provide a reliable guard against
zero indexing.

A more robust, but intensive, guard would be to use Rust’s typing system for
enforcement of valid participant indexes. Defining a new participant index type
could ensure that a zero index is not representable, and ensure that polynomial
evaluation is only possible on valid input values without lower-level checks. This
approach may more quickly catch indexing errors by the compiler, and could
catch other such errors during runtime without needing to propagate errors from
the polynomial evaluation itself.

Action: Addressed in commits 87dea5e and 2d56d24.

3.3.4 Incomplete FROST session-specific domain separation

Domain separation is used in the implementation to differentiate proofs and
keys, and to bind data to key generation sessions to prevent unwanted replay.
However, not all data is optimally bound to a FROST key generation session.

When a participant prepares its initial commitment message to be shared
with its peers, it binds a caller-provided domain separator (recommended to be
specific to the generation session) into the Fiat-Shamir challenge used in the
included proof of knowledge.

Later, the participant sends to each peer an encrypted message containing
share data. The key used for this encryption is derived from a transcript with
a fixed domain separator, which is not explicitly bound to a session. Further,
the encrypted message is accompanied by a proof of knowledge of the discrete

16https://blog.trailofbits.com/2021/12/21/disclosing-shamirs-secret-sharing-vul

nerabilities-and-announcing-zkdocs/

10

https://github.com/serai-dex/serai/commit/87dea5e455fa20ee0a0ffb97af3d8c0bdb938d79
https://github.com/serai-dex/serai/commit/2d56d24d9c1d4637700f8d6038d5ac6a2e7329b7
https://blog.trailofbits.com/2021/12/21/disclosing-shamirs-secret-sharing-vulnerabilities-and-announcing-zkdocs/
https://blog.trailofbits.com/2021/12/21/disclosing-shamirs-secret-sharing-vulnerabilities-and-announcing-zkdocs/

logarithm of an included ephemeral public key, but the Fiat-Shamir challenge
used for this proof also uses a fixed domain separator without session binding.

Finally, when decrypting a received encrypted message from a peer, the
participant generates a particular discrete logarithm equality proof that can be
used to identify a malicious peer. This proof’s Fiat-Shamir challenge similarly
is not bound to a session.

While we did not identify exploits arising from this due to defined abort
points in FROST key generation, it may be useful to include session binding for
each of these cases as a matter of good practice.

Action: Addressed in commit 4d6a0bb.

3.3.5 Incorrect documentation

When discussing key promotion, which migrates keys between group generators
in a verifiable manner, the implementation’s documentation is incorrect. The
documentation rather confusingly implies that this process is intended to mi-
grate keys between elliptic curve groups, which is incorrect. The implementation
initially provides a generic definition that could allow for different groups, but
later applies a type restriction that requires a common group. While it may be
possible to securely migrate keys in this manner using cross-group discrete log-
arithm equality proofs (which the repository provides, albeit experimentally),
this is out of scope and does not apply.

Recommendation is to update the documentation to clarify that key promo-
tion is currently implemented only between generators within the same group,
although it may later be more fully generalized to separate groups.

Action: Addressed in commit 1a6497f.

3.4 crypto/dleq

This crate implements discrete logarithm equality proofs. One such implemen-
tation is that of a generalization of a proof by Chaum and Pedersen17 showing
that sets of group elements share common discrete logarithms relative to given
generators. Another such implementation, which is out of scope, is a more
complex construction that operates between distinct groups.

While the implementation does not provide or cite a security proof that
its construction is a sigma protocol (that is, with properties of completeness,
special soundness, and special honest-verifier zero knowledge (SHVZK)), such
a proof is straightforward using modern techniques.

3.4.1 Security proof

Let G be a cyclic group where the discrete logarithm problem is hard, and let
F be its scalar field. Suppose we wish to make m separate discrete logarithm
equality assertions, where each such assertion j ∈ [1,m] proves that nj group
elements share a common discrete logarithm with respect to a given set of

17https://chaum.com/wp-content/uploads/2021/12/Wallet_Databases.pdf

11

https://github.com/serai-dex/serai/commit/4d6a0bbd7d8a2c08a839d8ca9099a04c0e1a4500
https://github.com/serai-dex/serai/commit/1a6497f37af9ecb0ded83bedac1eae6ead7a4770
https://chaum.com/wp-content/uploads/2021/12/Wallet_Databases.pdf

generators. We do not require that the set of generators be the same across
assertions.

The construction in the implementation is (effectively) intended to be a
sigma protocol for the following relation:

{(Gj,i)
m,nj

j,i=1, (Pj,i)
m,nj

j,i=1 ⊂ G; (xj)
m
j=1|∀j ∈ [1,m]∀i ∈ [1, nj] : Pj,i = xjGj,i}

To execute the protocol, the prover does the following:

• For j ∈ [1,m], samples x′
j ∈ F uniformly at random.

• For j ∈ [1,m] and i ∈ [1, nj], sets P
′
j,i = xjGj,i.

• Sends (Pj,i)
m,nj

j,i=1 to the verifier.

• Receives a uniformly-sampled challenge c ∈ F from the verifier.

• For j ∈ [1,m], sets yj = x′
j + cxj .

• Sends (yj)
m
j=1 to the verifier.

The verifier accepts the proof if and only if the equality

yjGj,i = P ′
j,i + cPj,i

holds for j ∈ [1,m] and i ∈ [1, nj].
The protocol is complete by inspection.
To show the protocol is 2-special sound, fix the statement values (Gj,i)

m,nj

j,i=1

and (Pj,i)
m,nj

j,i=1. We construct an extractor that, given two accepting transcripts
rewound with distinct challenges, extracts a valid witness.

Sample uniformly-random challenges c ̸= c, and let (P ′
j,i)

m,nj

j,i=1, (yj)
m
j=1 and

(P ′
j,i)

m,nj

j,i=1, (yj)
m
j=1 be corresponding transcripts for valid proofs. This means

that for j ∈ [1,m] and i ∈ [1, nj], the equalities

yjGj,i = P ′
j,i + cPj,i

and
yjGj,i = P ′

j,i + cPj,i

must hold Subtracting, we obtain that

(yj − yj)Gj,i = P ′
j,i + (c− c)Pj,i

for each pair. This means that

Pj,i =
yj − yj
c− c

Gj,i

and we have an extracted witness of the correct form that satisfies the proof
relation.

12

To show the protocol is SHVZK, fix the statement values (Gj,i)
m,nj

j,i=1 and

(Pj,i)
m,nj

j,i=1. We construct a simulator that, given a uniformly-sampled challenge,
can construct a valid proof transcript that is distributed identically to that of
a real proof.

Sample a challenge c uniformly at random. For j ∈ [1,m], sample yj ∈ F
uniformly at random. For j ∈ [1,m] and i ∈ [1, nj], set P

′
j,i = yjGj,i + cPj,i.

Then (P ′
j,i)

m,nj

j,i=1, (yj)
m
j=1 is trivially an accepting transcript by construction.

Further, since each yj in a real proof is distributed uniformly at random, the
simulated transcript is distributed identically.

Action: Not applicable.

3.4.2 Incomplete documentation

Several functions in the implementation lack documentation.
Recommended fix is to add documentation.
Action: Addressed in commit 6104d60.

3.4.3 Proving system functionality may be combined

The implementation contains separate structs and functions to handle proofs for
both single and multiple discrete logarithm equality assertions. It is the case
that the former is algebraically a special case of the latter, with only minor tran-
script generalizations. Because of this, the code can be simplified significantly
by treating the single-assertion case as a wrapper to the multiple-assertion func-
tionality. Doing so may reduce future technical debt.

Action: Addressed in commit 65376e9 for verification only.

3.4.4 Prover does not check input consistency

When producing a proof for the general case of multiple discrete logarithm
assertions, the implementation does not check that the number of generators
and scalars provided is consistent. This can result in a proof that is invalid and
will be rejected by the verifier. This issue was identified by Serai.

This behavior is not a security risk, as an adversary can always write its own
malicious prover, and an invalid proof constructed by the implementation due to
an input size mismatch will be correctly rejected by an honest verifier. However,
returning an invalid proof to the caller may produce unexpected behavior.

One fix is to have the prover return a Result that can indicate this error,
and let the caller decide how to proceed. Another fix is to rely on an assert

against an input consistency check; however, this implies that the caller should
perform its own consistency check to avoid an unexpected application panic. A
further fix is to modify the prover function signature to accept either a slice of
generator/scalar tuples, or to accept a custom input type that can handle input
consistency prior to being provided to the prover. Which approach to choose
depends on the implementation complexity and desired caller behavior.

Action: Addressed in commit c1435a2.

13

https://github.com/serai-dex/serai/commit/6104d606becf133a69f7a790b5b6462c65f6fd4a
https://github.com/serai-dex/serai/commit/65376e93e5d077d90348d531b911ee22ded411b3
https://github.com/serai-dex/serai/commit/c1435a20455b0469526f534354aa3f0ac7209d83

3.5 crypto/ff-group-tests

This crate provides a set of tests for generic fields, prime-order fields, and groups
compatible with the group and ff crates’ traits. The tests are then run against
the groups and fields corresponding to several implemented curves used in ci-
phersuites, which must implement these traits. The crate does not introduce
any new functionality.

3.5.1 Cyclic test structure

The codebase defines a collection of ciphersuites elsewhere, comprising the fol-
lowing elliptic curves:

• ristretto255

• ed25519

• ed448

• secp256k1

• P-256

Each ciphersuite implements the custom Ciphersuite trait, which in turn re-
quires that the underlying elliptic curve and scalar field implement PrimeGroup
and PrimeField, respectively. Due to library availability and dependencies for
these curves, they are implemented in different ways.

Because of these differences, the tests are conducted on the supported ci-
phersuites in a manner that is somewhat inconsistent. The ristretto255 and
ed25519 ciphersuites are tested as part of the crypto/dalek-ff-group wrap-
per. The ed448 ciphersuite (which is out of scope) is tested as part of its
crypto/ed448 implementation; we note that this implementation is documented
as being primarily for testing purposes. However, the secp256k1 and P-256 ci-
phersuites are tested directly by this crate, as they are defined using existing
library dependencies.

The inclusion of tests for secp256k1 and P-256 via development dependen-
cies serves a somewhat cyclic purpose: it allows for the use of established curve
libraries to ensure this crate’s tests pass, and provides additional testing for
those libraries. In theory, this could introduce a failure where an implementa-
tion flaw in one of these curve libraries coincides with an incorrect test in this
crate (though this may be unlikely).

Recommended change is to document the presence and intent of the curve
library development dependencies.

Action: Addressed in commit 32c18ca.

3.5.2 Tests are incomplete

Because the tests in this crate are intended for use against generic finite cyclic
groups, they variously require trait bounds from the group and ff crates. Each

14

https://github.com/serai-dex/serai/commit/32c18cac843b47d62f9946d053a59322f6e1fd9f

of these trait bounds introduces or requires various operations (generally by ad-
ditional trait bounds) relevant to the group or scalar field structure under test,
with the intent that a compliant curve implementation in fact have a valid group
structure making it suitable for use as a ciphersuite elsewhere in the codebase.
These operations include group addition and inversion, field addition and in-
version, field multiplication and inversion, identity properties, equality, element
representation, and interaction between group and scalar field operations.

It is complex and somewhat infeasible to properly exercise every possible
operational case introduced by each underlying trait bound. However, as one
intent of the crate is to be used with new or custom curve implementations, it
is important to exercise as many cases as is feasible.

The following additional Group-related tests are recommended:

• Successive calls to random with a suitable random number generator yield
non-identical values, in order to detect obvious randomization failure18

• Calling sum on an iterator with non-identical values produces the expected
result, in order to assert that each element in the iterator is included
exactly once in the resulting sum

• Calling from bytes on an invalid group element representation produces
the expected None-like result, to assert that deserialization can fail

• Calling from bytes unchecked on an invalid group element representation
produces whatever result is deemed appropriate

The following additional Field-related tests are recommended:

• Successive calls to random with a suitable random number generator yield
non-identical values, in order to detect obvious randomization failure

• Calling is odd on a doubled even element returns the expected value

• Calling is odd on a doubled odd element returns the expected value

• Calling from repr on an invalid or non-canonical scalar representation
produces the expected None-like result, to assert that deserialization can
fail

• Calling from repr on a valid and canonical scalar encoding, and then
calling to repr on the resulting scalar, should result in the same encoding;
while it is not clear if this is a required trait behavior, it may be unsafe
for an implementation to behave otherwise

The following existing Field-related tests are recommended to be changed:

• The tests for the validity of the S constant with respect to the given root
of unity and multiplicative generator should assert that the underlying
computed t value is odd, as specified by the trait documentation

Action: Addressed in commits 93f7afe and ed056cc as feasible.
18https://xkcd.com/221/

15

https://github.com/serai-dex/serai/commit/93f7afec8badb0e943e92dde7fd76ee40c474228
https://github.com/serai-dex/serai/commit/ed056cceaf95fd4f2ce5cf3afb893e95c95feb06
https://xkcd.com/221/

3.6 crypto/frost

This crate provides a generic implementation of FROST signatures, with the
intent of compatibility with version 12 of the corresponding draft standard.

It also extends this functionality. In particular, it is designed to accom-
modate other Schnorr-like signature applications by permitting more general
transcripting, nonce handling, and key offsets.

3.6.1 Ambiguous handling of invalid nonce generation

When generating nonces for the first round of FROST signing, the implemen-
tation performs a check that the output from the H3 hash function is not zero.
If it is, the generation process repeats with new randomness until the output is
nonzero.

We note that the IETF draft specification is poorly written as it pertains
to this. According to the specification, a nonce is initially permitted to be
zero. However, when the corresponding nonce commitments are serialized, if
any such commitment is the group identity, the serialization produces an error
that is intended to result in a protocol abort. Unfortunately, the specification
is ambiguous about if (or when) this nonce commitment serialization occurs
by the player generating nonces. It is already the case that deserialization of
such an invalid nonce commitment by another player will correctly result in a
protocol abort.

Despite these specification issues, the implementation’s handling is safe and
does not result in any incompatibility. The FROST preprint indicates that
nonces must be uniformly sampled so as to be nonzero; since the implemen-
tation effectively performs rejection sampling, it is an accurate representation
of this. A careful reading of this aspect of the preprint shows that a player
sampling in this manner will never initiate such a protocol abort. So while
the implementation differs from a strict reading of the specification, it does not
introduce any incompatibility or risk safety in any way.

Recommended action is to note this behavior in the code for clarity.
Action: Addressed in commit 969a5d9.

3.6.2 Nonce generation is not checked in test vectors

The draft specification includes test vectors for each supported ciphersuite. For
each, the implementation generates a signature using the provided keys and
message, and asserts that it is valid and matches the expected encoded value.

In addition to including each player’s key share and nonce commitments,
each test vector includes randomness data intended to be used to assert that
compliant implementations produce suitable nonces using the standard’s hash-
based approach in an expected way. However, the implementation does not use
these randomness values to test its nonce generation functionality.

The design of the nonce generation functionality is not currently suited to
supporting the test vectors, as it accepts a reference to a cryptographically-
secure random number generator used to produce the necessary randomness

16

https://github.com/serai-dex/serai/commit/969a5d94f2516245a77245cf815f3351cd991b02

(a common approach in Rust-based cryptographic protocol implementations).
This would need to be refactored to instead accept byte data that is either
produced by a random number generator or provided as part of a test vector.

While such a refactoring of may introduce additional engineering risk, a
recommended action is to do so, and to test it against each test vector to assert
compliance with the standard.

Action: Addressed in commit 7a05466.

3.6.3 Nonce commitment encoding is not checked in test vectors

The draft specification test vectors include nonces and nonce commitments
for each player in each test vector. The implementation reads and uses the
nonces, but does not specifically check that the corresponding nonce commit-
ments (which it computes itself) from the test vectors match.

While the draft standard does not specify communication details between
players for each signing round, the encodings used for nonce commitments are.
It may be useful to assert that the nonce commitments produced by the imple-
mentation from the nonces encode as expected.

Action: Addressed in commit 39b3452.

3.6.4 Inconsistent use of RFC 8032 test vectors

The implementation includes a single ed448 signature test vector, the function
name of which indicates it is taken from RFC 8032. While the test vector is
from RFC 8032, it should be more clearly documented as such.

Further, it is unclear why only the particular test vector was chosen for
inclusion, as RFC 8032 provides additional ed448 test vectors. Additionally, it
is unclear why none of the RFC 8032 test vectors for ed25519 are included.

Action: Addressed in commit 6a15b21.

3.6.5 Signature test vectors are unsourced

The implementation uses JSON-encoded FROST test vectors as part of its test
harness. While the vectors are taken directly from the draft specification repos-
itory19, they are not documented with this source.

Recommend documenting the test vector source for clarity.
Action: Addressed in commit 62b3036.

3.6.6 Incomplete documentation and terminology for nonces

Several structures and functions, particularly those relating to nonces and nonce
commitments, lack documentation. This is particularly relevant since the im-
plementation is extremely generalized relative to its handling of these construc-
tions. Standard FROST nonce commitments are formed by taking a pair of

19https://github.com/cfrg/draft-irtf-cfrg-frost

17

https://github.com/serai-dex/serai/commit/7a054660496e0dbd7d7adc6e6bc8cf0891e1c83a
https://github.com/serai-dex/serai/commit/39b3452da1719696495613b928652942225e1de9
https://github.com/serai-dex/serai/commit/6a15b21949e7ca7a177d7c06a7ae65ddda2429c1
https://github.com/serai-dex/serai/commit/62b3036cbd3d0fc9d024fde5b377567db6b90d53
https://github.com/cfrg/draft-irtf-cfrg-frost

randomly-generated scalar nonces and multiplying each by the same group gen-
erator; these are later summed using a deterministic binding factor. However,
the implementation allows for much more flexibility. In the most general case,
a participant may use the same nonce pair across multiple group generators,
and in fact perform this operation repeatedly with multiple collections of nonce
scalar pairs and group generators. Although standard-compliant FROST sig-
natures do not use this generality, the broader design adds complexity to the
overall design that warrants careful documentation.

Related to this, the documentation for the SignMachine::from cache func-
tion appears to be incomplete and truncated.

Finally, the terminology used to refer to aspects of the nonce and nonce
commitment functionality is somewhat relaxed, as terms like “nonce” and “gen-
erator” and “commitment” are sometimes reused or combined in subtle ways
that are not particularly standardized throughout.

Recommend adding proper documentation for clarity, and considering a
refactoring of nonce and nonce commitment terminology for consistency and
clarity.

Action: Addressed in commit 5a3406b.

3.6.7 Unsafe transcript is public

The implementation includes IetfTranscript, a public transcript construction
that implements the Transcript trait and is intended for use in generating
compliant FROST signatures. This construction exists to allow a generalization
of transcripting for FROST signatures to enable safer handling of signatures
within other protocols, and is designed such that the more general signature
functionality reduces cleanly to the draft specification in the event that no such
protocol embedding is required.

To meet its intended use case, IetfTranscript naively handles transcript
operations in a manner that would be unsafe in other situations. For example,
it ignores transcript labeling and domain separation, does not label messages,
and produces empty challenges.

We note that the documentation for this construction clearly indicates that
it should not be “used within larger protocols” because of its design. However,
the fact that it is public seems to introduce unncessary risk of unsafe use in
other contexts.

If it is not possible to restrict the visibility of IetfTranscript, it may be
useful to introduce a marker trait indicating Transcript implementations that
might be considered safe for general use.

Action: Addressed in commit a42a84e.

3.6.8 Offset splitting can be simplified

The implementation supports, as an optional feature, the ability for a group
to offset its signing key by a secret value, such that verification applies a cor-
responding offset to the group public key. This approach, while not part of

18

https://github.com/serai-dex/serai/commit/5a3406bb5f483dd84efc2eea34ab6092ca13bf10
https://github.com/serai-dex/serai/commit/a42a84e1e8adb83451d70fe9d9e66cd47aba85da

the draft specification, is included in draft ZIP 31220 We note that this re-
randomization is still undergoing formal analysis21, but is straightforward.

The approach used in the implementation is to have each player apply a share
of the offset when producing their signing shares, and to verify the signature
against an offset public group key. While the existing API may not support
doing so, there are two approaches that may be used if considered both feasible
and simpler.

In the first, a designated player applies the entire offset when producing its
signature share. The selection of this player may be done deterministically by
establishing a rule like using the player with the lowest index.

In the second, the method of ZIP 312 is used. No player applies the off-
set (in whole or in part) during either round of signing; however, each player
includes the public key offset when producing nonce binding factors. During
the aggregation phase, each player applies the offset when summing signature
shares.

Recommended fix is to switch to one of these methods for simplicity if fea-
sible (given likely required API changes). If particular signer interoperability is
desired, use of the ZIP 312 method may be preferred.

Action: Addressed in commit c6284b8.

3.6.9 Insufficient tests

The implementation includes a variety of tests for supported cipheruites. It first
tests randomized FROST threshold Schnorr signature correctness. It next cre-
ates invalid randomized FROST threshold Schnorr signatures that are produced
by deterministically invalidating the share of a fixed player, and asserts that the
resulting signature fails verification. Finally, it checks compliance with the draft
specification by asserting that test vectors produce expected valid signatures.

While these are useful tests, they fail to capture failure modes of interest,
and additionally fail to exercise the broader generality of the design beyond that
relating to specification compliance.

There are several failure modes that might arise, and many important checks
throughout the implementation to assert validity and other security properties.
Currrently, the only failure mode testing is to invalidate a single signature share;
while this is done on tests using randomized keys, the share invalidation method
(both the player index and method of malleating an originally-valid share) uses
fixed values. The test is therefore fairly limited.

Part of the generalization allows for the use of key offsets intended for re-
randomizing signatures. Because this is not directly supported as part of the
specification, it is untested as part of the library. However, it is used elsewhere
in the repository, which is out of scope.

Further, the implementation supports the use of more complex nonce com-
mitment constructions with common discrete logarithms, and even multiple sets

20https://github.com/ZcashFoundation/zips/blob/8836e22610c4575b7c46f8a31e3819d

e1ac7efbf/zip-0312.rst#re-randomizable-frost
21https://zfnd.org/frost-performance/

19

https://github.com/serai-dex/serai/commit/c6284b85a4c3ccb91e336f30cda9b11d0b6bea9f
https://github.com/ZcashFoundation/zips/blob/8836e22610c4575b7c46f8a31e3819de1ac7efbf/zip-0312.rst#re-randomizable-frost
https://github.com/ZcashFoundation/zips/blob/8836e22610c4575b7c46f8a31e3819de1ac7efbf/zip-0312.rst#re-randomizable-frost
https://zfnd.org/frost-performance/

of these. This functionality involves the careful use of additional binding fac-
tors and discrete logarithm equality proofs, but is not tested as FROST Schnorr
signatures do not use these features.

Recommended fix is to add tests that exercise failure modes more flexibly,
and that exercise the more generalized functionality that the implementation
provides.

Action: Addressed in commit 2fd5cd8.

3.7 crypto/multiexp

This crate contains implementations of Straus- and Pippenger-type multiscalar
multiplication algorithms. In addition, it provides a generic batching system
that smartly handles the use case of asserting that each of a set of group element
linear combinations evaluates to zero, and optionally identifying a failing linear
combination within a failing set.

3.7.1 Code duplication

The implementation applies a random weight to each linear combination when
added to a batch queue, and then flattens this data when evaluating the resulting
multiscalar multiplication. However, it does so inconsistently and in several
places, in part to handle zeroization differently for constant- and variable-time
use cases. For example, constant-time verification performs the flattening in the
verify core function (which is called by the verify wrapper), variable-time
verifications performs it directly in the verify vartime function, and blaming
performs it in the blame vartime function. It may be simpler and more clear
to refactor these functions to reduce duplication and risk of error.

A recommended action, if such simplification is desired, is to perform such
a refactoring.

Action: Addressed in commit 15d6be1.

3.7.2 Denial-of-service risk in blame

The implementation offers verification modes that, on failure of a batch to
evaluate to zero, performs a binary search to identify a failing linear combination
within the batch. The binary search always performs a split at the center of the
underlying data vector as it performs its evaluations. Because of this, it may
be possible to maliciously order input data within a batch in order to maximize
the computation effort and time required for blame identification. This is likely
not a practical concern due to the logarithmic complexity of binary search, and
the risk of this occurring depends entirely on how the caller arranges its batch
data.

Recommended action is to either shuffle the input data prior to the blame
operation, or select the binary search split points randomly. Note that in the
latter action, it is not necessary to use a cryptographically-secure random num-

20

https://github.com/serai-dex/serai/commit/2fd5cd8161426182b4d9ea481d65d9d6ff995dbf
https://github.com/serai-dex/serai/commit/15d6be16783064a3e94780e1fd79861534c6aef8

ber generator; any reasonable pseudorandom number generator would suffice
and likely yield improved performance.

Action: Not addressed. This ensures that blame is deterministic, and takes
advantage of the complexity scaling as a mitigation.

3.7.3 Incomplete tests

Tests are incomplete. While benchmarking code for the Straus and Pippenger
algorithms exists, there are no specific test functions that directly check both
algorithms separately; instead, correctness tests for both algorithms use variable
input sizes to trigger different algorithm selections. Further, there are no checks
(via benchmarks or tests) against edge cases for either algorithm. A more robust
approach would be to test both algorithms and the selection algorithm directly.

Further, testing of batch verification is offloaded to other crates that use this
functionality.

Recommended action is to add these tests.
Action: Addressed in commit 8661111.

3.7.4 Variable-time input data is assumed not to be secret

The implementation generally assumes that variable-time operations are not
secret, and does not internally zeroize input data. While it is often the case that
higher-level protocol implementers will use constant-time operations for secret
input data and variable-time operations for public input data, this may not
always be the case. In particular, it may be the case that a protocol implementer
does not deem the risks of operation time leakage and in-memory copies of
secrets to be linked in any particular way.

Recommended actions are either to unify the treatment of input data with
respect to zeroization, or carefully document the existing behavior to reduce
risk.

Action: Addressed in commit 15d6be1.

3.7.5 Incomplete documentation

Several functions in the implementation lack documentation.
Recommended fix is to add documentation.
Action: Addressed in commit e5329b4.

3.7.6 Inefficiency in constant-time algorithms

When using variable-time multiscalar multiplication evaluation in both the
Straus and Pippenger algorithms, the implementation performs an index check
that avoids an unnecessary doubling; however, the corresponding constant-time
functions do not perform it. Because this does not rely on input data, it does
not affect constant-time security.

Recommended fix is to add the check to the constant-time functions for both
algorithms.

21

https://github.com/serai-dex/serai/commit/8661111fc6b9228e15276a566994a9fa7a6e39f6
https://github.com/serai-dex/serai/commit/15d6be16783064a3e94780e1fd79861534c6aef8
https://github.com/serai-dex/serai/commit/e5329b42e6122fb6f2ebe5c97e94107daa34f798

Action: Addressed in commit 1d2ebdc.

3.7.7 Inefficiency in variable-time Pippenger algorithm

When using variable-time multiscalar multiplication evaluation in the Pippenger
algorithm, the implementation iterates over buckets of group elements and adds
their contents to an accumulator. In the case where the underlying curve group
implementation uses constant-time addition, this means that inclusion of an
empty bucket is done inefficiently.

Recommended fix is to add a check for empty buckets to short-circuit their
addition to the accumulator in the variable-time Pippenger evaluation function.

Action: Addressed in commit 1d2ebdc.

3.8 crypto/schnorr

This crate provides generic functionality for Schnorr-type signatures, with the
intent of compatibility with RFC 8032 Ed25519 signatures. Signatures are pro-
duced in a manner that is agnostic to the challenge (and, therefore, challenge
hashing algorithm) used, and to the underlying elliptic curve group. Batch
verification of signatures is supported, and there is an implementation of half-
aggregated signatures22.

Work on Ed25519 signature verification23 notes undesired flexibility for sig-
nature verification, such that it is possible for different implementations to main-
tain compatibility with RFC 8032 but have functionally different verification
criteria24. For example, it is possible to provide non-canonical point encodings
as part of a signature whose validity is subsequently undefined. At a minimum,
a compliant implementation should pass the appropriate test vectors provided
in RFC 8032.

3.8.1 Incomplete cross-compatibility

Because of the poor verification criteria in RFC 8032, Ed25519 (and related)
implementations differ significantly in handling of certain edge cases. While this
crate’s implementation likely maintains strict compatibility with RFC 8032 in
the sense that it passes randomized tests, it can reject signatures provided by
other implementations.

In the case of the crate’s ed25519 group dependency provided elsewhere in
the repository, verification keys and signature R group elements are checked
to assert they have no torsion component and are therefore elements of the
curve group’s prime-order subgroup. As this is not a specific requirement of
RFC 8032, it is possible to present a verification key or signature failing this
assertion, which results in signature verification failure; other implementations,

22https://eprint.iacr.org/2021/350
23https://github.com/penumbra-zone/ed25519-consensus
24https://hdevalence.ca/blog/2020-10-04-its-25519am

22

https://github.com/serai-dex/serai/commit/1d2ebdca62148a690d7e7a8c90daf2838f0267ab
https://github.com/serai-dex/serai/commit/1d2ebdca62148a690d7e7a8c90daf2838f0267ab
https://eprint.iacr.org/2021/350
https://github.com/penumbra-zone/ed25519-consensus
https://hdevalence.ca/blog/2020-10-04-its-25519am

like those following the ZIP 21525 specification, would not reject signatures for
this reason.

If more strict compatibility with other particular implementations is desired,
a recommended fix is to make changes to verification criteria to account for this.

Action: Addressed in commit 35043d2.

3.8.2 Incomplete tests

The crate does not include RFC 8032 test vectors, which should be specifically
checked for strict RFC 8032 compatibility.

Recommended fix is to add tests using such test vectors.
Action: Addressed in commit 08f9287.

3.8.3 Risk of unsafe challenges

The implementation is intentionally agnostic to challenge generation, and as-
sumes that the caller computes the appropriate challenge for a verification key
and signature passed to the signer and verifier. This extends to aggregated sig-
natures as well. Challenge agnosticism introduces nontrivial risk, as failure to
properly compute challenges in Fiat-Shamir constructions occurs in practice26.
Details of challenge computation depend on specific signature instantiations
(some of which themselves may imply risk).

Recommended fix is to carefully document this risk.
Action: Addressed in commit 053f07a.

3.8.4 Incorrect half-aggregated signature implementation

Half-aggregated signatures are implemented. While the source preprint27 for
the technique is academic in nature and not a precise specification, it does not
match the implementation architecture.

While the security analysis of the half-aggregation method described in Al-
gorithm 7 of the preprint assumes that aggregation coefficients are produced
using all verification keys, nonces, and messages for the signatures being aggre-
gated as hash inputs to the H1 hash function, the preprint later notes a possible
optimization. In this optimization, the existing H0 outputs from each individual
signature are used as H1 inputs instead. However, the implementation modifies
this by passing to H1 both the verification key and (presumably H0-derived)
challenge from each signature. Because the correctness of individual signatures
challenges is (as noted elsewhere) not enforced or checked, the correctness of
aggregation H1-based challenges cannot be asserted.

We further note that the preprint does not appear to discuss the specific
implications, if any, of the optimization on the security arguments, which relies

25https://zips.z.cash/zip-0215
26https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vul

nerabilities-affecting-girault-bulletproofs-and-plonk/
27https://eprint.iacr.org/2021/350

23

https://github.com/serai-dex/serai/commit/35043d28893c0e64529f16a368f859fedf82c452
https://github.com/serai-dex/serai/commit/08f92871079926b20a179f9ca415a016e166a4b2
https://github.com/serai-dex/serai/commit/053f07a28146d633cfd86011d0a6808b2b816779
https://zips.z.cash/zip-0215
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://eprint.iacr.org/2021/350

on a forking lemma structure. While we do not see any particular risks incurred
from the optimization, there may be a theoretical loss of reduction tightness.

Although the inclusion of verification keys in the optimized aggregation co-
efficient computation does not match the construction in the preprint, it does
not pose any security issues of concern, and it is not strictly necessary to issue
a recommended fix. However, the verification keys may be removed if there
is sufficient confidence in the correctness of the individual signature challenges
passed to the verifier.

Action: Addressed in commit 8b7e7b1.

3.8.5 Possible non-uniform sampling of aggregated signature hash
functions

As noted, the overall aggregated signature design requires cryptographic hash
functionsH0 andH1 modeling random oracles: H0 is used to compute individual
signature challenges, and H1 is used to compute aggregation coefficients.

In order to properly model distinct random oracles, it is necessary that H0

and H1 be sampled uniformly. We note that this is not specifically indicated
by the source preprint, but appears to be implied and required by the secu-
rity arguments. A standard approach in protocol implementations to ensure
uniform hash function sampling is to use careful domain separation of a single
cryptographic hash function.

As already noted, individual signature challenges (which in the preprint are
constructed using H0) are not controlled or checked by the implementation in
order to be agnostic about specific design choices. However, the aggregation
coefficients (which in the preprint are constructed using H1) in the implementa-
tion are directly constructed using domain separation of a generic hash function
selected by the caller.

This means that it is possible for the caller to arrange its H0 challenge and
H1 hash function instantiations such that the required uniform sampling is not
maintained. We note that provided the H0 challenges are sanely computed
with non-colliding domain separation, and provided a modern cryptographic
hash function is selected for H1 aggregation coefficients, it is very unlikely that
exploitable non-uniform sampling could arise in practice.

One possible mitigation is to offload H1 hash function domain separation
to the caller. While this does introduce some risk by requiring the caller to
perform the domain separation safely and correctly, it provides flexibility that
may make it easier for the caller to ensure H0 and H1 are effectively sampled
uniformly as required.

Action: Addressed in commit 5306717.

3.8.6 Unclear aggregation coefficient security target

The implementation documentation indicates that to target a 128-bit security
level, it is sufficient to use a 128-bit hash function for use in computing ag-

24

https://github.com/serai-dex/serai/commit/8b7e7b1a1c5c98ef31a99df6b726c420e38fd221
https://github.com/serai-dex/serai/commit/530671795ada0f42f593d680cf892ee222047af2

gregation coefficients. Interestingly, the citation28 given for this conclusion is
a preprint discussing batch verification, not half-aggregated signatures of the
type used in the implementation, and it is unclear why its conclusions apply
in this circumstance. The analysis in the design source preprint is somewhat
unclear on the nature of the relationship between the security target and aggre-
gation hash function output size, as it presents several different constructions
with different reduction tightness. From the analysis given, it appears that the
construction used in the implementation still requires 256-bit hash function out-
puts in order to reach a 128-bit security target. However, the preprint notes
that similar Schnorr reductions do not yield particular exploitable weaknesses
in other analyses.

Recommended fix is to require and use a hash function with 256-bit output
for aggregation coefficients. While this incurs a performance reduction for a
variable-time verifier, we note that the implementation may be modified to
support batch verification, which can somewhat offset this penalty.

Action: Addressed in commit 97374a3.

3.9 crypto/transcript

This crate provides a generic Transcript trait intended to be used in Fiat-
Shamir applications, where data is added to a domain-separated transcript,
and challenges or RNG seeds may be sampled. It then provides a generic
DigestTranscript struct that implements Transcript and can take advantage
of any cryptographic hash function (enforced using a custom SecureDigest trait
bound). It also provides MerlinTranscript, a Transcript implementation
that uses the Merlin transcripting system29. Finally, it provides an instantia-
tion RecommendedTranscript of DigestTranscript that uses 512-bit Blake2b
as its hash function.

3.9.1 Malfunctioning digest trait bound

The SecureDigest trait includes a bound that the underlying digest output
size be at least 256 bytes. This is an error, as the 128-bit security target implies
an output size of 256 bits, or 32 bytes. The associated docstring also contains
this error in its description.

However, there is an associated error with unknown cause. Namely, the
RecommendedTranscript type alias, which implements SecureDigest, uses the
Blake2b hash function with 512-bit output. As this is only 64 bytes, it should
fail the incorrect SecureDigest trait bound, but does not.

This is not a security issue, since RecommendedTranscript does meet the
security target with a safe cryptographic hash function; however, it suggests an
upstream implementation error.

28https://cr.yp.to/badbatch/badbatch-20120919.pdf
29https://merlin.cool/

25

https://github.com/serai-dex/serai/commit/97374a3e243ad8fcc707018f861390e7220b7ceb
https://cr.yp.to/badbatch/badbatch-20120919.pdf
https://merlin.cool/

Recommended fixes are to correct the docstring and trait bound, and to
identify and account for (to the extent possible) any upstream issue that results
in the digest output size mismatch.

Action: Addressed in commits 2f4f1de and 7efedb9.

3.9.2 Possibly confusing randomization seed function

The Transcript trait includes separate functionality for challenge and random
number generator seed generation. While these are distinct functions, they use
the same underlying DigestTranscriptMember implementation for inclusion
into the transcript. This means that generation of a challenge or seed with
the same label from the same transcript state can (depending on instantiation)
result in identical data. It is possible that the user may not expect this behavior,
which could result in an unintended collision.

Recommended fixes are either a docstring improvement, or the addition
of a separate DigestTranscriptMember element for random number generator
seeds.

Action: Addressed in commit 79124b9.

3.9.3 Possible domain separation conflict in Merlin wrapper

The Transcript trait includes functionality for transcript domain separation,
which can be used for protocol composition. In the DigestTranscript struct,
the domain separator is distinguished from other transcript elements via the use
of a separate DigestTranscriptMember to prevent collisions.

The Merlin transcript wrapper fails to explicitly enforce this differentiation,
and relies on the Merlin library’s message appending functionality. Domain sep-
aration is implemented by adding a message to the underlying Merlin transcript
with a label dom-sep. This means it is possible to induce a transcript collision
if the user adds a transcript message with this label.

A recommended fix is to document this behavior to avoid collisions.
Action: Addressed in commit 20a3307.

3.9.4 No tests exist

This crate contains no tests.
Recommended fix is to add tests.
Action: Addressed in commit a053454.

3.10 crypto-tweaks

Commits to this repository branch include minor changes like adding debug-
ging trait implementations, updating dependencies, improving constant-time
operations, and refactoring for naming clarity. A more substantive update
separates Schnorr signature functionality based on transcript type, such that

26

https://github.com/serai-dex/serai/commit/2f4f1de488272bc0d4f3a040e253534c24f7e7bb
https://github.com/serai-dex/serai/commit/7efedb9a9136ec3e37fec1cb35f33a8426d89a90
https://github.com/serai-dex/serai/commit/79124b9a3394ae1eaadf066fb7bc431afdaf5be3
https://github.com/serai-dex/serai/commit/20a33079f8a6d3b6f69a9221432844406440f21b
https://github.com/serai-dex/serai/commit/a053454ae4135cad006dc38afdac008412300a81

IetfTranscript is handled separately from generic transcripts. Another sig-
nificant change is to modify the handling of DigestTranscript challenges to
be safer when used with hash functions susceptible to length extension.

3.10.1 Incomplete handling of intended constant-time operations

The implementation uses Rust’s black box functionality to mitigate the risk of
variable-time operations relating to boolean conversions to u8 prior to the use
of Choice, which accepts only a u8 value. Further, it aims to zeroize values
during this process that may be secret. However, it misses several instances of
this behavior.

Recommended fix is to expand the use of black box and zeroization to all
such conversions.

Action: Addressed in commit ad470bc.

3.10.2 Indirect transcript testing

The implementation includes tests of two Transcript instantiations: Merlin
transcripts defined via MerlinTranscript, and the Blake2b-based transcript
used in the RecommendedTranscript type alias for a DigestTranscript in-
stantiation.

However, the test does not directly use the RecommendedTranscript type
alias, instead using a direct DigestTranscript instantiation that happens to
match the type alias. As a result, any change to this type alias will not be
automatically reflected in testing.

Recommended fix is to use RecommendedTranscript directly in testing.
Action: Addressed in commit 669d2db, which also tests DigestTranscript

with SHA-256, a hash function susceptible to length extension.

27

https://github.com/serai-dex/serai/commit/ad470bc969c58e30192e2bcd020b970b90cab60a
https://github.com/serai-dex/serai/commit/669d2dbffc1dafb82a09d9419ea182667115df06

	Overview
	Introduction
	Summary of findings

	Scope
	crypto/ciphersuite
	crypto/dalek-ff-group
	crypto/dkg
	crypto/dleq
	crypto/ff-group-tests
	crypto/frost
	crypto/multiexp
	crypto/schnorr
	crypto/transcript

	Findings
	crypto/ciphersuite
	Incomplete documentation for hash-to-field constants
	Duplicated domain separation tag overflow handling
	Unnecessary wrapping addition
	Hashing to scalar may collide

	crypto/dalek-ff-group
	Constants are unsourced and untested
	Non-standard group element randomization
	Group element randomization can yield identity
	Unused and public field constants
	Missing documentation

	crypto/dkg
	Unnecessary fallible type conversion in Lagrange coefficients
	Unnecessary stream cipher nonce
	Lack of low-level guards against polynomial evaluation at zero
	Incomplete FROST session-specific domain separation
	Incorrect documentation

	crypto/dleq
	Security proof
	Incomplete documentation
	Proving system functionality may be combined
	Prover does not check input consistency

	crypto/ff-group-tests
	Cyclic test structure
	Tests are incomplete

	crypto/frost
	Ambiguous handling of invalid nonce generation
	Nonce generation is not checked in test vectors
	Nonce commitment encoding is not checked in test vectors
	Inconsistent use of RFC 8032 test vectors
	Signature test vectors are unsourced
	Incomplete documentation and terminology for nonces
	Unsafe transcript is public
	Offset splitting can be simplified
	Insufficient tests

	crypto/multiexp
	Code duplication
	Denial-of-service risk in blame
	Incomplete tests
	Variable-time input data is assumed not to be secret
	Incomplete documentation
	Inefficiency in constant-time algorithms
	Inefficiency in variable-time Pippenger algorithm

	crypto/schnorr
	Incomplete cross-compatibility
	Incomplete tests
	Risk of unsafe challenges
	Incorrect half-aggregated signature implementation
	Possible non-uniform sampling of aggregated signature hash functions
	Unclear aggregation coefficient security target

	crypto/transcript
	Malfunctioning digest trait bound
	Possibly confusing randomization seed function
	Possible domain separation conflict in Merlin wrapper
	No tests exist

	crypto-tweaks
	Incomplete handling of intended constant-time operations
	Indirect transcript testing

