use rand_core::{RngCore, CryptoRng}; use transcript::Transcript; use group::{ff::{Field, PrimeFieldBits}, prime::PrimeGroup}; use multiexp::BatchVerifier; use crate::cross_group::{ Generators, DLEqError, scalar::{scalar_convert, mutual_scalar_from_bytes} }; #[cfg(feature = "serialize")] use std::io::{Read, Write}; #[cfg(feature = "serialize")] use ff::PrimeField; #[cfg(feature = "serialize")] use crate::{read_scalar, cross_group::read_point}; #[allow(non_camel_case_types)] #[derive(Clone, PartialEq, Eq, Debug)] pub(crate) enum Re { R(G0, G1), // Merged challenges have a slight security reduction, yet one already applied to the scalar // being proven for, and this saves ~8kb. Alternatively, challenges could be redefined as a seed, // present here, which is then hashed for each of the two challenges, remaining unbiased/unique // while maintaining the bandwidth savings, yet also while adding 252 hashes for // Secp256k1/Ed25519 e(G0::Scalar) } impl Re { #[allow(non_snake_case)] pub(crate) fn R_default() -> Re { Re::R(G0::identity(), G1::identity()) } pub(crate) fn e_default() -> Re { Re::e(G0::Scalar::zero()) } } #[allow(non_snake_case)] #[derive(Clone, PartialEq, Eq, Debug)] pub(crate) struct Aos { Re_0: Re, s: [(G0::Scalar, G1::Scalar); RING_LEN] } impl< G0: PrimeGroup, G1: PrimeGroup, const RING_LEN: usize > Aos where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits { #[allow(non_snake_case)] fn nonces(mut transcript: T, nonces: (G0, G1)) -> (G0::Scalar, G1::Scalar) { transcript.domain_separate(b"aos_membership_proof"); transcript.append_message(b"ring_len", &u8::try_from(RING_LEN).unwrap().to_le_bytes()); transcript.append_message(b"nonce_0", nonces.0.to_bytes().as_ref()); transcript.append_message(b"nonce_1", nonces.1.to_bytes().as_ref()); mutual_scalar_from_bytes(transcript.challenge(b"challenge").as_ref()) } #[allow(non_snake_case)] fn R( generators: (Generators, Generators), s: (G0::Scalar, G1::Scalar), A: (G0, G1), e: (G0::Scalar, G1::Scalar) ) -> (G0, G1) { (((generators.0.alt * s.0) - (A.0 * e.0)), ((generators.1.alt * s.1) - (A.1 * e.1))) } #[allow(non_snake_case)] fn R_batch( generators: (Generators, Generators), s: (G0::Scalar, G1::Scalar), A: (G0, G1), e: (G0::Scalar, G1::Scalar) ) -> (Vec<(G0::Scalar, G0)>, Vec<(G1::Scalar, G1)>) { (vec![(-s.0, generators.0.alt), (e.0, A.0)], vec![(-s.1, generators.1.alt), (e.1, A.1)]) } #[allow(non_snake_case)] fn R_nonces( transcript: T, generators: (Generators, Generators), s: (G0::Scalar, G1::Scalar), A: (G0, G1), e: (G0::Scalar, G1::Scalar) ) -> (G0::Scalar, G1::Scalar) { Self::nonces(transcript, Self::R(generators, s, A, e)) } #[allow(non_snake_case)] pub(crate) fn prove( rng: &mut R, transcript: T, generators: (Generators, Generators), ring: &[(G0, G1)], actual: usize, blinding_key: (G0::Scalar, G1::Scalar), mut Re_0: Re ) -> Self { // While it is possible to use larger values, it's not efficient to do so // 2 + 2 == 2^2, yet 2 + 2 + 2 < 2^3 debug_assert!((RING_LEN == 2) || (RING_LEN == 4)); debug_assert_eq!(RING_LEN, ring.len()); let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); RING_LEN]; let r = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng)); #[allow(non_snake_case)] let original_R = (generators.0.alt * r.0, generators.1.alt * r.1); #[allow(non_snake_case)] let mut R = original_R; for i in ((actual + 1) .. (actual + RING_LEN + 1)).map(|i| i % RING_LEN) { let e = Self::nonces(transcript.clone(), R); if i == 0 { match Re_0 { Re::R(ref mut R0_0, ref mut R1_0) => { *R0_0 = R.0; *R1_0 = R.1 }, Re::e(ref mut e_0) => *e_0 = e.0 } } // Solve for the real index if i == actual { s[i] = (r.0 + (e.0 * blinding_key.0), r.1 + (e.1 * blinding_key.1)); debug_assert_eq!(Self::R(generators, s[i], ring[actual], e), original_R); break; // Generate a decoy response } else { s[i] = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng)); } R = Self::R(generators, s[i], ring[i], e); } Aos { Re_0, s } } // Assumes the ring has already been transcripted in some form. Critically insecure if it hasn't pub(crate) fn verify( &self, rng: &mut R, transcript: T, generators: (Generators, Generators), batch: &mut (BatchVerifier<(), G0>, BatchVerifier<(), G1>), ring: &[(G0, G1)] ) -> Result<(), DLEqError> { debug_assert!((RING_LEN == 2) || (RING_LEN == 4)); debug_assert_eq!(RING_LEN, ring.len()); #[allow(non_snake_case)] match self.Re_0 { Re::R(R0_0, R1_0) => { let mut e = Self::nonces(transcript.clone(), (R0_0, R1_0)); for i in 0 .. (RING_LEN - 1) { e = Self::R_nonces(transcript.clone(), generators, self.s[i], ring[i], e); } let mut statements = Self::R_batch( generators, *self.s.last().unwrap(), *ring.last().unwrap(), e ); statements.0.push((G0::Scalar::one(), R0_0)); statements.1.push((G1::Scalar::one(), R1_0)); batch.0.queue(&mut *rng, (), statements.0); batch.1.queue(&mut *rng, (), statements.1); }, Re::e(e_0) => { let e_0 = (e_0, scalar_convert(e_0).ok_or(DLEqError::InvalidChallenge)?); let mut e = None; for i in 0 .. RING_LEN { e = Some( Self::R_nonces(transcript.clone(), generators, self.s[i], ring[i], e.unwrap_or(e_0)) ); } // Will panic if the above loop is never run somehow // If e wasn't an Option, and instead initially set to e_0, it'd always pass if e_0 != e.unwrap() { Err(DLEqError::InvalidProof)?; } } } Ok(()) } #[cfg(feature = "serialize")] pub(crate) fn serialize(&self, w: &mut W) -> std::io::Result<()> { #[allow(non_snake_case)] match self.Re_0 { Re::R(R0, R1) => { w.write_all(R0.to_bytes().as_ref())?; w.write_all(R1.to_bytes().as_ref())?; }, Re::e(e) => w.write_all(e.to_repr().as_ref())? } for i in 0 .. RING_LEN { w.write_all(self.s[i].0.to_repr().as_ref())?; w.write_all(self.s[i].1.to_repr().as_ref())?; } Ok(()) } #[allow(non_snake_case)] #[cfg(feature = "serialize")] pub(crate) fn deserialize(r: &mut R, mut Re_0: Re) -> std::io::Result { match Re_0 { Re::R(ref mut R0, ref mut R1) => { *R0 = read_point(r)?; *R1 = read_point(r)? }, Re::e(ref mut e) => *e = read_scalar(r)? } let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); RING_LEN]; for i in 0 .. RING_LEN { s[i] = (read_scalar(r)?, read_scalar(r)?); } Ok(Aos { Re_0, s }) } }