#![allow(non_snake_case)]
use lazy_static::lazy_static;
use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
scalar::Scalar,
traits::VartimePrecomputedMultiscalarMul,
edwards::{EdwardsPoint, VartimeEdwardsPrecomputation}
};
#[cfg(feature = "experimental")]
use curve25519_dalek::edwards::CompressedEdwardsY;
use monero::{consensus::Encodable, util::ringct::{Key, Clsag}};
use crate::{
Commitment,
transaction::decoys::Decoys,
random_scalar,
hash_to_scalar,
hash_to_point
};
#[cfg(feature = "multisig")]
mod multisig;
#[cfg(feature = "multisig")]
pub use multisig::{Details, Multisig};
#[derive(Error, Debug)]
pub enum Error {
#[error("internal error ({0})")]
InternalError(String),
#[error("invalid ring member (member {0}, ring size {1})")]
InvalidRingMember(u8, u8),
#[error("invalid commitment")]
InvalidCommitment,
#[error("invalid D")]
InvalidD,
#[error("invalid s")]
InvalidS,
#[error("invalid c1")]
InvalidC1
}
#[derive(Clone, Debug)]
pub struct Input {
// The actual commitment for the true spend
pub commitment: Commitment,
// True spend index, offsets, and ring
pub decoys: Decoys
}
lazy_static! {
static ref INV_EIGHT: Scalar = Scalar::from(8 as u8).invert();
}
impl Input {
pub fn new(
commitment: Commitment,
decoys: Decoys
) -> Result {
let n = decoys.len();
if n > u8::MAX.into() {
Err(Error::InternalError("max ring size in this library is u8 max".to_string()))?;
}
if decoys.i >= (n as u8) {
Err(Error::InvalidRingMember(decoys.i, n as u8))?;
}
// Validate the commitment matches
if decoys.ring[usize::from(decoys.i)][1] != commitment.calculate() {
Err(Error::InvalidCommitment)?;
}
Ok(Input { commitment, decoys })
}
}
enum Mode {
Sign(usize, EdwardsPoint, EdwardsPoint),
#[cfg(feature = "experimental")]
Verify(Scalar)
}
fn core(
ring: &[[EdwardsPoint; 2]],
I: &EdwardsPoint,
pseudo_out: &EdwardsPoint,
msg: &[u8; 32],
D: &EdwardsPoint,
s: &[Scalar],
// Use a Result as Either for sign/verify
A_c1: Mode
) -> (([u8; 32], Scalar, Scalar), Scalar) {
let n = ring.len();
// Doesn't use a constant time table as dalek takes longer to generate those then they save
let images_precomp = VartimeEdwardsPrecomputation::new([I, D]);
let D = D * *INV_EIGHT;
let mut to_hash = vec![];
to_hash.reserve_exact(((2 * n) + 5) * 32);
const PREFIX: &str = "CLSAG_";
const AGG_0: &str = "CLSAG_agg_0";
const ROUND: &str = "round";
to_hash.extend(AGG_0.bytes());
to_hash.extend([0; 32 - AGG_0.len()]);
let mut P = vec![];
P.reserve_exact(n);
let mut C = vec![];
C.reserve_exact(n);
for member in ring {
P.push(member[0]);
C.push(member[1] - pseudo_out);
}
for member in ring {
to_hash.extend(member[0].compress().to_bytes());
}
for member in ring {
to_hash.extend(member[1].compress().to_bytes());
}
to_hash.extend(I.compress().to_bytes());
let D_bytes = D.compress().to_bytes();
to_hash.extend(D_bytes);
to_hash.extend(pseudo_out.compress().to_bytes());
let mu_P = hash_to_scalar(&to_hash);
to_hash[AGG_0.len() - 1] = '1' as u8;
let mu_C = hash_to_scalar(&to_hash);
to_hash.truncate(((2 * n) + 1) * 32);
for i in 0 .. ROUND.len() {
to_hash[PREFIX.len() + i] = ROUND.as_bytes()[i] as u8;
}
to_hash.extend(pseudo_out.compress().to_bytes());
to_hash.extend(msg);
let mut c;
let mut c1 = Scalar::zero();
let end;
let mut i;
match A_c1 {
Mode::Sign(r, A, AH) => {
to_hash.extend(A.compress().to_bytes());
to_hash.extend(AH.compress().to_bytes());
c = hash_to_scalar(&to_hash);
end = r;
i = (end + 1) % n;
if i == 0 {
c1 = c;
}
},
#[cfg(feature = "experimental")]
Mode::Verify(c1) => {
end = 0;
i = 0;
c = c1;
}
}
let mut first = true;
while (i != end) || first {
first = false;
let c_p = mu_P * c;
let c_c = mu_C * c;
let L = (&s[i] * &ED25519_BASEPOINT_TABLE) + (c_p * P[i]) + (c_c * C[i]);
let PH = hash_to_point(&P[i]);
// Shouldn't be an issue as all of the variables in this vartime statement are public
let R = (s[i] * PH) + images_precomp.vartime_multiscalar_mul(&[c_p, c_c]);
to_hash.truncate(((2 * n) + 3) * 32);
to_hash.extend(L.compress().to_bytes());
to_hash.extend(R.compress().to_bytes());
c = hash_to_scalar(&to_hash);
i = (i + 1) % n;
if i == 0 {
c1 = c;
}
}
((D_bytes, c * mu_P, c * mu_C), c1)
}
pub(crate) fn sign_core(
rng: &mut R,
I: &EdwardsPoint,
input: &Input,
mask: Scalar,
msg: &[u8; 32],
A: EdwardsPoint,
AH: EdwardsPoint
) -> (Clsag, EdwardsPoint, Scalar, Scalar) {
let r: usize = input.decoys.i.into();
let pseudo_out = Commitment::new(mask, input.commitment.amount).calculate();
let z = input.commitment.mask - mask;
let H = hash_to_point(&input.decoys.ring[r][0]);
let D = H * z;
let mut s = Vec::with_capacity(input.decoys.ring.len());
for _ in 0 .. input.decoys.ring.len() {
s.push(random_scalar(rng));
}
let ((D_bytes, p, c), c1) = core(&input.decoys.ring, I, &pseudo_out, msg, &D, &s, Mode::Sign(r, A, AH));
(
Clsag {
D: Key { key: D_bytes },
s: s.iter().map(|s| Key { key: s.to_bytes() }).collect(),
c1: Key { key: c1.to_bytes() }
},
pseudo_out,
p,
c * z
)
}
pub fn sign(
rng: &mut R,
inputs: &[(Scalar, EdwardsPoint, Input)],
sum_outputs: Scalar,
msg: [u8; 32]
) -> Option> {
if inputs.len() == 0 {
return None;
}
let nonce = random_scalar(rng);
let mut rand_source = [0; 64];
rng.fill_bytes(&mut rand_source);
let mut res = Vec::with_capacity(inputs.len());
let mut sum_pseudo_outs = Scalar::zero();
for i in 0 .. inputs.len() {
let mut mask = random_scalar(rng);
if i == (inputs.len() - 1) {
mask = sum_outputs - sum_pseudo_outs;
} else {
sum_pseudo_outs += mask;
}
let mut rand_source = [0; 64];
rng.fill_bytes(&mut rand_source);
let (mut clsag, pseudo_out, p, c) = sign_core(
rng,
&inputs[i].1,
&inputs[i].2,
mask,
&msg,
&nonce * &ED25519_BASEPOINT_TABLE,
nonce * hash_to_point(&inputs[i].2.decoys.ring[usize::from(inputs[i].2.decoys.i)][0])
);
clsag.s[inputs[i].2.decoys.i as usize] = Key {
key: (nonce - ((p * inputs[i].0) + c)).to_bytes()
};
res.push((clsag, pseudo_out));
}
Some(res)
}
// Not extensively tested nor guaranteed to have expected parity with Monero
#[cfg(feature = "experimental")]
pub fn rust_verify(
clsag: &Clsag,
ring: &[[EdwardsPoint; 2]],
I: &EdwardsPoint,
pseudo_out: &EdwardsPoint,
msg: &[u8; 32]
) -> Result<(), Error> {
let c1 = Scalar::from_canonical_bytes(clsag.c1.key).ok_or(Error::InvalidC1)?;
let (_, c1_calculated) = core(
ring,
I,
pseudo_out,
msg,
&CompressedEdwardsY(clsag.D.key).decompress().ok_or(Error::InvalidD)?.mul_by_cofactor(),
&clsag.s.iter().map(|s| Scalar::from_canonical_bytes(s.key).ok_or(Error::InvalidS)).collect::, _>>()?,
Mode::Verify(c1)
);
if c1_calculated != c1 {
Err(Error::InvalidC1)?;
}
Ok(())
}
// Uses Monero's C verification function to ensure compatibility with Monero
#[link(name = "wrapper")]
extern "C" {
pub(crate) fn c_verify_clsag(
serialized_len: usize,
serialized: *const u8,
ring_size: u8,
ring: *const u8,
I: *const u8,
pseudo_out: *const u8,
msg: *const u8
) -> bool;
}
pub fn verify(
clsag: &Clsag,
ring: &[[EdwardsPoint; 2]],
I: &EdwardsPoint,
pseudo_out: &EdwardsPoint,
msg: &[u8; 32]
) -> Result<(), Error> {
// Workaround for the fact monero-rs doesn't include the length of clsag.s in clsag encoding
// despite it being part of clsag encoding. Reason for the patch version pin
let mut serialized = vec![clsag.s.len() as u8];
clsag.consensus_encode(&mut serialized).unwrap();
let I_bytes = I.compress().to_bytes();
let mut ring_bytes = vec![];
for member in ring {
ring_bytes.extend(&member[0].compress().to_bytes());
ring_bytes.extend(&member[1].compress().to_bytes());
}
let pseudo_out_bytes = pseudo_out.compress().to_bytes();
unsafe {
if c_verify_clsag(
serialized.len(), serialized.as_ptr(),
ring.len() as u8, ring_bytes.as_ptr(),
I_bytes.as_ptr(), pseudo_out_bytes.as_ptr(), msg.as_ptr()
) {
Ok(())
} else {
Err(Error::InvalidC1)
}
}
}