Commit graph

211 commits

Author SHA1 Message Date
Luke Parker
e05b77d830
Support multiple key shares per validator (#416)
* Update the coordinator to give key shares based on weight, not based on existence

Participants are now identified by their starting index. While this compiles,
the following is unimplemented:

1) A conversion for DKG `i` values. It assumes the threshold `i` values used
will be identical for the MuSig signature used to confirm the DKG.
2) Expansion from compressed values to full values before forwarding to the
processor.

* Add a fn to the DkgConfirmer to convert `i` values as needed

Also removes TODOs regarding Serai ensuring validator key uniqueness +
validity. The current infra achieves both.

* Have the Tributary DB track participation by shares, not by count

* Prevent a node from obtaining 34% of the maximum amount of key shares

This is actually mainly intended to set a bound on message sizes in the
coordinator. Message sizes are amplified by the amount of key shares held, so
setting an upper bound on said amount lets it determine constants. While that
upper bound could be 150, that'd be unreasonable and increase the potential for
DoS attacks.

* Correct the mechanism to detect if sufficient accumulation has occured

It used to check if the latest accumulation hit the required threshold. Now,
accumulations may jump past the required threshold. The required mechanism is
to check the threshold wasn't prior met and is now met.

* Finish updating the coordinator to handle a multiple key share per validator environment

* Adjust stategy re: preventing noce reuse in DKG Confirmer

* Add TODOs regarding dropped transactions, add possible TODO fix

* Update tests/coordinator

This doesn't add new multi-key-share tests, it solely updates the existing
single key-share tests to compile and run, with the necessary fixes to the
coordinator.

* Update processor key_gen to handle generating multiple key shares at once

* Update SubstrateSigner

* Update signer, clippy

* Update processor tests

* Update processor docker tests
2023-11-04 19:26:13 -04:00
Luke Parker
4c9e3b085b
Add a String to Monero ConnectionErrors debugging the issue
We're reaching this in CI so there must be some issue present.
2023-11-03 05:45:33 -04:00
github-actions[bot]
a2089c61fb
November 2023 - Rust Nightly Update (#413)
* Update nightly

* Replace .get(0) with .first()

* allow new clippy lint

---------

Co-authored-by: GitHub Actions <>
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2023-11-03 05:28:07 -04:00
Luke Parker
34bcb9eb01 bitcoin 0.31 2023-10-31 03:47:45 -04:00
Luke Parker
da01de08c9
Restore logger init in processor tests 2023-10-27 23:08:06 -04:00
Luke Parker
052ef39a25
Replace reqwest with hyper in monero-serai
Ensures a connection pool isn't used behind-the-scenes, as necessitated by
authenticated connections.
2023-10-27 23:05:47 -04:00
Luke Parker
86ff0ae71b
No longer run processor tests again when testing against 0.17.3.2
Even though the intent was to test against 0.17.3.2, and a Monero 0.17.3.2 node
was running, the processor now uses docker which will always use 0.18.
Accordingly, while the intent was valid, it was pointless.

This is unfortunate, as testing against 0.17 helped protect against edge cases.
The infra to preserve their tests isn't worth the benefit we'd gain from said
tests however.
2023-10-26 14:29:51 -04:00
Luke Parker
3069138475
Fix handling of Monero daemon connections when using an authenticated RPC
The lack of locking the connection when making an authenticated request, which
is actually two sequential requests, risked another caller making a request in
between, invalidating the state.

Now, only unauthenticated connections share a connection object.
2023-10-26 12:45:39 -04:00
Luke Parker
7c10873cd5
Tweak how the Monero node is run for the processor tests
Disables the unused zmq RPC.

Removes authentication which seems to be unstable as hell when under load
(see #351).

No longer use Network::Isolated as it's not needed here (the Monero nodes run
with `--offline`).
2023-10-23 07:56:55 -04:00
Luke Parker
08180cc563
Resolve #405 2023-10-23 07:56:43 -04:00
Luke Parker
0d23964762
Resolve #335 2023-10-23 05:10:13 -04:00
Luke Parker
fd1826cca9
Implement a fee on every input to prevent prior described economic attacks
Completes #297.
2023-10-22 21:31:13 -04:00
Luke Parker
f561fa9ba1
Fix a bug which would attempt to create a transaction with N::MAX_INPUTS + 1 2023-10-22 19:15:52 -04:00
Luke Parker
0fff5391a8
Improve the reasoning for why the Bitcoin DUST constant is set as it is
Also halves the minimum fee policy, which still may be 2x-4x higher than
necessary due to API limitations within bitcoin-serai (which we can fix as it's
within our scope).
2023-10-22 18:06:44 -04:00
Luke Parker
a71a789912
Monero median_fee fn 2023-10-22 17:43:21 -04:00
Luke Parker
83c41eccd4
Bitcoin Dust constant justification, median_fee fn 2023-10-22 07:03:33 -04:00
Luke Parker
b66203ae3f
Update Bitcoin Docker image to 25.1
Also decreases the Bitcoin dummy fee.
2023-10-20 18:52:43 -04:00
Luke Parker
43a182fc4c
Reduce dummy fee used by Monero 2023-10-20 17:57:02 -04:00
Luke Parker
c056b751fe
Remove Fee from the Network API
The only benefit to having it would be the ability to cache it across
prepare_send, which can be done internally to the Network.
2023-10-20 16:12:28 -04:00
Luke Parker
5977121c48
Don't mutate Plans when signing
This is achieved by not using the Plan struct anymore, yet rather its
decomposition. While less ergonomic, it meets our wants re: safety.
2023-10-20 10:56:18 -04:00
Luke Parker
7b6181ecdb
Remove Plan ID non-determinism leading Monero to have distinct TX fees
Monero would select decoys with a new RNG seed, which may have used more bytes,
increasing the fee.

There's a few comments here.

1) Non-determinism wasn't removed via distinguishing the edits. It was done by
   removing part of the transcript. A TODO exists to improve this.
2) Distinct TX fees is a test failure, not an issue in prod *unless* the distinct
   fee is greater. So long as the distinct fee is lesser, it's fine.
3) Removing outputs is expected to only decrease fees.
2023-10-20 08:11:42 -04:00
EmmanuelChthonic
f976bc86ac fix key fn not being called in getter 2023-10-20 07:34:19 -04:00
Luke Parker
441bf62e11
Simplify amortize_fee, correct scheduler's amortizing of branch fees 2023-10-20 05:40:16 -04:00
Luke Parker
4852dcaab7
Move common code from prepare_send into Network trait 2023-10-20 04:42:08 -04:00
Luke Parker
d6bc1c1ea3
Explicitly only adjust operating costs when plan.change.is_some()
The existing code should've mostly handled this fine. Only a single edge case
(TX fee reduction on no-change Plans) would cause an improper increase in
operating costs.
2023-10-19 23:16:04 -04:00
Luke Parker
7b2dec63ce
Don't scan outputs which are dust, track dust change as operating costs
Fixes #299.
2023-10-19 08:02:10 -04:00
Luke Parker
3255c0ace5
Track and amortize operating costs to ensure solvency
Implements most of #297 to the point I'm fine closing it. The solution
implemented is distinct than originally designed, yet much simpler.

Since we have a fully-linear view of created transactions, we don't have to
per-output track operating costs incurred by that output. We can track it
across the entire Serai system, without hooking into the Eventuality system.

Also updates documentation.
2023-10-19 03:13:44 -04:00
Luke Parker
584943d1e9
Modify SubstrateBlockAck as needed
Replaces plan IDs with key + ID, letting the coordinator determine the sessions
for the plans.

Properly scopes which plan IDs are set on which tributaries, and ensures we
have the necessary tributaries at time of handling.
2023-10-14 20:37:54 -04:00
Luke Parker
5c5c097da9 Tweaks for processor to work with the new serai-client 2023-10-14 15:26:36 -04:00
Luke Parker
f6e8bc3352
Alternate handover batch TOCTOU fix (#397)
* Revert "Correct the prior documented TOCTOU"

This reverts commit d50fe87801.

* Correct the prior documented TOCTOU

d50fe87801 edited the challenge for the Batch to
fix it. This won't produce Batch n+1 until Batch n is successfully published
and verified. It's an alternative strategy able to be reviewed, with a much
smaller impact to scope.
2023-10-13 12:14:59 -04:00
Luke Parker
d50fe87801
Correct the prior documented TOCTOU
Now, if a malicious validator set publishes a malicious `Batch` at the last
moment, it'll cause all future `Batch`s signed by the next validator set to
require a bool being set (yet they never will set it).

This will prevent the handover.

The only overhead is having two distinct `batch_message` calls on-chain.
2023-10-13 04:41:01 -04:00
Luke Parker
1d9e2efc33
Don't unwrap result of call which makes network requests 2023-10-12 18:49:49 -04:00
Luke Parker
9cdca1d3d6
Use the newly stabilized div_ceil
Sets a msrv of 1.73.0.
2023-10-05 14:28:03 -04:00
Luke Parker
4ee65ed243
Update nightly
Supersedes #387.
2023-10-03 01:34:15 -04:00
Luke Parker
bd5491dfd5
Simply Coordinator/Processors::send by accepting impl Into *Message 2023-09-29 04:19:59 -04:00
Luke Parker
0eff3d9453
Add Batch messages from processor, verify Batchs published on-chain
Renames Update to SignedBatch.

Checks Batch equality via a hash of the InInstructions. That prevents needing
to keep the Batch in node state or TX introspect.
2023-09-29 03:51:01 -04:00
Luke Parker
83b3a5c31c
Document how receiving a Processor message does indeed make its Tributary relevant 2023-09-28 20:09:17 -04:00
Luke Parker
7d738a3677
Start moving Coordinator to a multi-Tributary model
Prior, we only supported a single Tributary per network, and spawned a task to
handled Processor messages per Tributary. Now, we handle Processor messages per
network, yet we still only supported a single Tributary in that handling
function.

Now, when we handle a message, we load the Tributary which is relevant. Once we
know it, we ensure we have it (preventing race conditions), and then proceed.

We do need work to check if we should have a Tributary, or if we're not
participating. We also need to check if a Tributary has been retired, meaning
we shouldn't handle any transactions related to them, and to clean up retired
Tributaries.
2023-09-27 20:49:02 -04:00
Luke Parker
40b7bc59d0
Use dedicated Queues for each from-to pair
Prevents one Processor's message from halting the entire pipeline.
2023-09-27 12:20:57 -04:00
Luke Parker
269db1c4be
Remove the "expected" next ID
It's an unnecessary extra layer better handled locally.
2023-09-27 11:13:55 -04:00
Luke Parker
ca69f97fef
Add support for multiple multisigs to the processor (#377)
* Design and document a multisig rotation flow

* Make Scanner::eventualities a HashMap so it's per-key

* Don't drop eventualities, always follow through on them

Technical improvements made along the way.

* Start creating an isolate object to manage multisigs, which doesn't require being a signer

Removes key from SubstrateBlock.

* Move Scanner/Scheduler under multisigs

* Move Batch construction into MultisigManager

* Clarify "should" in Multisig Rotation docs

* Add block_number to MultisigManager, as it controls the scanner

* Move sign_plans into MultisigManager

Removes ThresholdKeys from prepare_send.

* Make SubstrateMutable an alias for MultisigManager

* Rewrite Multisig Rotation

The prior scheme had an exploit possible where funds were sent to the old
multisig, then burnt on Serai to send from the new multisig, locking liquidity
for 6 hours. While a fee could be applied to stragglers, to make this attack
unprofitable, the newly described scheme avoids all this.

* Add mini

mini is a miniature version of Serai, emphasizing Serai's nature as a
collection of independent clocks. The intended use is to identify race
conditions and prove protocols are comprehensive regarding when certain clocks
tick.

This uses loom, a prior candidate for evaluating the processor/coordinator as
free of race conditions (#361).

* Use mini to prove a race condition in the current multisig rotation docs, and prove safety of alternatives

Technically, the prior commit had mini prove the race condition.

The docs currently say the activation block of the new multisig is the block
after the next Batch's. If the two next Batches had already entered the
mempool, prior to set_keys being called, the second next Batch would be
expected to contain the new key's data yet fail to as the key wasn't public
when the Batch was actually created.

The naive solution is to create a Batch, publish it, wait until it's included,
and only then scan the next block. This sets a bound of
`Batch publication time < block time`. Optimistically, we can publish a Batch
in 24s while our shortest block time is 2m. Accordingly, we should be fine with
the naive solution which doesn't take advantage of throughput. #333 may
significantly change latency however and require an algorithm whose throughput
exceeds the rate of blocks created.

In order to re-introduce parallelization, enabling throughput, we need to
define a safe range of blocks to scan without Serai ordering the first one.
mini demonstrates safety of scanning n blocks Serai hasn't acknowledged, so
long as the first is scanned before block n+1 is (shifting the n-block window).

The docs will be updated next, to reflect this.

* Fix Multisig Rotation

I believe this is finally good enough to be final.

1) Fixes the race condition present in the prior document, as demonstrated by
mini.

`Batch`s for block `n` and `n+1`, may have been in the mempool when a
multisig's activation block was set to `n`. This would cause a potentially
distinct `Batch` for `n+1`, despite `n+1` already having a signed `Batch`.

2) Tightens when UIs should use the new multisig to prevent eclipse attacks,
and protection against `Batch` publication delays.

3) Removes liquidity fragmentation by tightening flow/handling of latency.

4) Several clarifications and documentation of reasoning.

5) Correction of "prior multisig" to "all prior multisigs" regarding historical
verification, with explanation why.

* Clarify terminology in mini

Synchronizes it from my original thoughts on potential schema to the design
actually created.

* Remove most of processor's README for a reference to docs/processor

This does drop some misc commentary, though none too beneficial. The section on
scanning, deemed sufficiently beneficial, has been moved to a document and
expanded on.

* Update scanner TODOs in line with new docs

* Correct documentation on Bitcoin::Block::time, and Block::time

* Make the scanner in MultisigManager no longer public

* Always send ConfirmKeyPair, regardless of if in-set

* Cargo.lock changes from a prior commit

* Add a policy document on defining a Canonical Chain

I accidentally committed a version of this with a few headers earlier, and this
is a proper version.

* Competent MultisigManager::new

* Update processor's comments

* Add mini to copied files

* Re-organize Scanner per multisig rotation document

* Add RUST_LOG trace targets to e2e tests

* Have the scanner wait once it gets too far ahead

Also bug fixes.

* Add activation blocks to the scanner

* Split received outputs into existing/new in MultisigManager

* Select the proper scheduler

* Schedule multisig activation as detailed in documentation

* Have the Coordinator assert if multiple `Batch`s occur within a block

While the processor used to have ack_up_to_block, enabling skips in the block
acked, support for this was removed while reworking it for multiple multisigs.
It should happen extremely infrequently.

While it would still be beneficial to have, if multiple `Batch`s could occur
within a block (with the complexity here not being worth adding that ban as a
policy), multiple `Batch`s were blocked for DoS reasons.

* Schedule payments to the proper multisig

* Correct >= to <

* Use the new multisig's key for change on schedule

* Don't report External TXs to prior multisig once deprecated

* Forward from the old multisig to the new one at all opportunities

* Move unfulfilled payments in queue from prior to new multisig

* Create MultisigsDb, splitting it out of MainDb

Drops the call to finish_signing from the Signer. While this will cause endless
re-attempts, the Signer will still consider them completed and drop them,
making this an O(n) cost at boot even if we did nothing from here.

The MultisigManager should call finish_signing once the Scanner completes the
Eventuality.

* Don't check Scanner-emitted completions, trust they are completions

Prevents needing to use async code to mark the completion and creates a
fault-free model. The current model, on fault, would cause a lack of marked
completion in the signer.

* Fix a possible panic in the processor

A shorter-chain reorg could cause this assert to trip. It's fixed by
de-duplicating the data, as the assertion checked consistency. Without the
potential for inconsistency, it's unnecessary.

* Document why an existing TODO isn't valid

* Change when we drop payments for being to the change address

The earlier timing prevents creating Plans solely to the branch address,
causing the payments to be dropped, and the TX to become an effective
aggregation TX.

* Extensively document solutions to Eventualities being potentially created after having already scanned their resolutions

* When closing, drop External/Branch outputs which don't cause progress

* Properly decide if Change outputs should be forward or not when closing

This completes all code needed to make the old multisig have a finite lifetime.

* Commentary on forwarding schemes

* Provide a 1 block window, with liquidity fragmentation risks, due to latency

On Bitcoin, this will be 10 minutes for the relevant Batch to be confirmed. On
Monero, 2 minutes. On Ethereum, ~6 minutes.

Also updates the Multisig Rotation document with the new forwarding plan.

* Implement transaction forwarding from old multisig to new multisig

Identifies a fault where Branch outputs which shouldn't be dropped may be, if
another output fulfills their next step. Locking Branch fulfillment down to
only Branch outputs is not done in this commit, but will be in the next.

* Only let Branch outputs fulfill branches

* Update TODOs

* Move the location of handling signer events to avoid a race condition

* Avoid a deadlock by using a RwLock on a single txn instead of two txns

* Move Batch ID out of the Scanner

* Increase from one block of latency on new keys activation to two

For Monero, this offered just two minutes when our latency to publish a Batch
is around a minute already. This does increase the time our liquidity can be
fragmented by up to 20 minutes (Bitcoin), yet it's a stupid attack only
possible once a week (when we rotate). Prioritizing normal users' transactions
not being subject to forwarding is more important here.

Ideally, we'd not do +2 blocks yet plus `time`, such as +10 minutes, making
this agnostic of the underlying network's block scheduling. This is a
complexity not worth it.

* Split MultisigManager::substrate_block into multiple functions

* Further tweaks to substrate_block

* Acquire a lock on all Scanner operations after calling ack_block

Gives time to call register_eventuality and initiate signing.

* Merge sign_plans into substrate_block

Also ensure the Scanner's lock isn't prematurely released.

* Use a HashMap to pass to-be-forwarded instructions, not the DB

* Successfully determine in ClosingExisting

* Move from 2 blocks of latency when rotating to 10 minutes

Superior as noted in 6d07af92ce10cfd74c17eb3400368b0150eb36d7, now trivial to
implement thanks to prior commit.

* Add note justifying measuring time in blocks when rotating

* Implement delaying of outputs received early to the new multisig per specification

* Documentation on why Branch outputs don't have the race condition concerns Change do

Also ensures 6 hours is at least N::CONFIRMATIONS, for sanity purposes.

* Remove TODO re: sanity checking Eventualities

We sanity check the Plan the Eventuality is derived from, and the Eventuality
is handled moments later (in the same file, with a clear call path). There's no
reason to add such APIs to Eventualities for a sanity check given that.

* Add TODO(now) for TODOs which must be done in this branch

Also deprecates a pair of TODOs to TODO2, and accepts the flow of the Signer
having the Eventuality.

* Correct errors in potential/future flow descriptions

* Accept having a single Plan Vec

Per the following code consuming it, there's no benefit to bifurcating it by
key.

* Only issue sign_transaction on boot for the proper signer

* Only set keys when participating in their construction

* Misc progress

Only send SubstrateBlockAck when we have a signer, as it's only used to tell
the Tributary of what Plans are being signed in response to this block.

Only immediately sets substrate_signer if session is 0.

On boot, doesn't panic if we don't have an active key (as we wouldn't if only
joining the next multisig). Continues.

* Correctly detect and set retirement block

Modifies the retirement block from first block meeting requirements to block
CONFIRMATIONS after.

Adds an ack flow to the Scanner's Confirmed event and Block event to accomplish
this, which may deadlock at this time (will be fixed shortly).

Removes an invalid await (after a point declared unsafe to use await) from
MultisigsManager::next_event.

* Remove deadlock in multisig_completed and document alternative

The alternative is simpler, albeit less efficient. There's no reason to adopt
it now, yet perhaps if it benefits modeling?

* Handle the final step of retirement, dropping the old key and setting new to existing

* Remove TODO about emitting a Block on every step

If we emit on NewAsChange, we lose the purpose of the NewAsChange period.

The only concern is if we reach ClosingExisting, and nothing has happened, then
all coins will still be in the old multisig until something finally does. This
isn't a problem worth solving, as it's latency under exceptional dead time.

* Add TODO about potentially not emitting a Block event for the reitrement block

* Restore accidentally deleted CI file

* Pair of slight tweaks

* Add missing if statement

* Disable an assertion when testing

One of the test flows currently abuses the Scanner in a way triggering it.
2023-09-25 09:48:15 -04:00
Luke Parker
7ac0de3a8d
Correct binding properties of Bitcoin eventuality
Eventualities need to be binding not just to a plan, yet to the execution of
the plan (the outputs). Bitcoin's Eventuality definition short-cutted this
under a honest multisig assumption, causing the following issue:

If multisig n+1 is verifying multisig n's actions, as detailed in
multi-multisig's document on multisig rotation, it'll check no outstanding
eventualities exist. If we solely bind to the plan, a malicious multisig n
could steal outbound payments yet cause the plan to be marked as successfully
completed.

By modifying the eventuality to also include the expected outputs, this is no
longer possible. Binding to the expected input is preserved in order to remain
binding to the plan (allowing two plans with the same output-set to co-exist).
2023-09-08 05:21:18 -04:00
Luke Parker
2472ec7ba8
Don't attempt parsing truncated InInstructions 2023-09-02 17:18:04 -04:00
Luke Parker
bd9a05feef
Document UTXO solvency modeling 2023-09-02 16:11:01 -04:00
Luke Parker
7d8e08d5b4
Use scale instead of bincode throughout processor-messages/processor DB
scale is canonical, bincode is not.
2023-09-02 07:54:09 -04:00
Luke Parker
f7e49e1f90
Update Rust nightly
Supersedes #368.

Adds exceptions for unwrap_or_default due to preference against Default's
ambiguity.
2023-09-02 01:24:09 -04:00
Luke Parker
83c25eff03
Remove no longer necessary async from monero SignatableTransaction::sign 2023-08-29 16:20:21 -04:00
Luke Parker
285422f71a
Add a full-stack mint and burn test for Bitcoin and Monero
Fixes where ram_scanned is updated in processor. The prior version, while safe,
would redo massive amounts of work during periods of inactivity. It also hit an
undocumented invariant where get_eventuality_completions assumes new blocks,
yet redone work wouldn't have new blocks.

Modifies Monero's generate_blocks to return the hashes of the generated blocks.
2023-08-28 21:17:22 -04:00
Luke Parker
ea8e26eca3
Use an empty key for Batch's SignId 2023-08-24 20:39:34 -04:00
Luke Parker
bccdabb53d
Use a single Substrate signer, per intentions in #227
Removes key from Update as well, since it's no longer variable.
2023-08-24 20:30:50 -04:00