* Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++
* Initial eVRF implementation
Not quite done yet. It needs to communicate the resulting points and proofs to
extract them from the Pedersen Commitments in order to return those, and then
be tested.
* Add the openings of the PCs to the eVRF as necessary
* Add implementation of secq256k1
* Make DKG Encryption a bit more flexible
No longer requires the use of an EncryptionKeyMessage, and allows pre-defined
keys for encryption.
* Make NUM_BITS an argument for the field macro
* Have the eVRF take a Zeroizing private key
* Initial eVRF-based DKG
* Add embedwards25519 curve
* Inline the eVRF into the DKG library
Due to how we're handling share encryption, we'd either need two circuits or to
dedicate this circuit to the DKG. The latter makes sense at this time.
* Add documentation to the eVRF-based DKG
* Add paragraph claiming robustness
* Update to the new eVRF proof
* Finish routing the eVRF functionality
Still needs errors and serialization, along with a few other TODOs.
* Add initial eVRF DKG test
* Improve eVRF DKG
Updates how we calculcate verification shares, improves performance when
extracting multiple sets of keys, and adds more to the test for it.
* Start using a proper error for the eVRF DKG
* Resolve various TODOs
Supports recovering multiple key shares from the eVRF DKG.
Inlines two loops to save 2**16 iterations.
Adds support for creating a constant time representation of scalars < NUM_BITS.
* Ban zero ECDH keys, document non-zero requirements
* Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519
* Add Ristretto eVRF trait impls
* Support participating multiple times in the eVRF DKG
* Only participate once per key, not once per key share
* Rewrite processor key-gen around the eVRF DKG
Still a WIP.
* Finish routing the new key gen in the processor
Doesn't touch the tests, coordinator, nor Substrate yet.
`cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor`
does pass.
* Deduplicate and better document in processor key_gen
* Update serai-processor tests to the new key gen
* Correct amount of yx coefficients, get processor key gen test to pass
* Add embedded elliptic curve keys to Substrate
* Update processor key gen tests to the eVRF DKG
* Have set_keys take signature_participants, not removed_participants
Now no one is removed from the DKG. Only `t` people publish the key however.
Uses a BitVec for an efficient encoding of the participants.
* Update the coordinator binary for the new DKG
This does not yet update any tests.
* Add sensible Debug to key_gen::[Processor, Coordinator]Message
* Have the DKG explicitly declare how to interpolate its shares
Removes the hack for MuSig where we multiply keys by the inverse of their
lagrange interpolation factor.
* Replace Interpolation::None with Interpolation::Constant
Allows the MuSig DKG to keep the secret share as the original private key,
enabling deriving FROST nonces consistently regardless of the MuSig context.
* Get coordinator tests to pass
* Update spec to the new DKG
* Get clippy to pass across the repo
* cargo machete
* Add an extra sleep to ensure expected ordering of `Participation`s
* Update orchestration
* Remove bad panic in coordinator
It expected ConfirmationShare to be n-of-n, not t-of-n.
* Improve documentation on functions
* Update TX size limit
We now no longer have to support the ridiculous case of having 49 DKG
participations within a 101-of-150 DKG. It does remain quite high due to
needing to _sign_ so many times. It'd may be optimal for parties with multiple
key shares to independently send their preprocesses/shares (despite the
overhead that'll cause with signatures and the transaction structure).
* Correct error in the Processor spec document
* Update a few comments in the validator-sets pallet
* Send/Recv Participation one at a time
Sending all, then attempting to receive all in an expected order, wasn't working
even with notable delays between sending messages. This points to the mempool
not working as expected...
* Correct ThresholdKeys serialization in modular-frost test
* Updating existing TX size limit test for the new DKG parameters
* Increase time allowed for the DKG on the GH CI
* Correct construction of signature_participants in serai-client tests
Fault identified by akil.
* Further contextualize DkgConfirmer by ValidatorSet
Caught by a safety check we wouldn't reuse preprocesses across messages. That
raises the question of we were prior reusing preprocesses (reusing keys)?
Except that'd have caused a variety of signing failures (suggesting we had some
staggered timing avoiding it in practice but yes, this was possible in theory).
* Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests
* Correct shimmed setting of a secq256k1 key
* cargo fmt
* Don't use `[0; 32]` for the embedded keys in the coordinator rotation test
The key_gen function expects the random values already decided.
* Big-endian secq256k1 scalars
Also restores the prior, safer, Encryption::register function.
* Check if the serai wasm was built successfully by verifying the build container's status code and state, instead of checking the volume mountpoint locally
* Use a log statement for which wasm is used
* Minor typo fix
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
Moves from concatted Dockerfiles to pseudo-templated Dockerfiles via a dedicated Rust program.
Removes the unmaintained kubernetes, not because we shouldn't have/use it, but because it's unmaintained and needs to be reworked before it's present again.
Replaces the compose with the work in the new orchestrator binary which spawns everything as expected. While this arguably re-invents the wheel, it correctly manages secrets and handles the variadic Dockerfiles.
Also adds an unrelated patch for zstd and simplifies running services a bit by greater utilizing the existing infrastructure.
---
* Delete all Dockerfile fragments, add new orchestator to generate Dockerfiles
Enables greater templating.
Also delete the unmaintained kubernetes folder *for now*. This should be
restored in the future.
* Use Dockerfiles from the orchestator
* Ignore Dockerfiles in the git repo
* Remove CI job to check Dockerfiles are as expected now that they're no longer committed
* Remove old Dockerfiles from repo
* Use Debian for monero-wallet-rpc
* Remove replace_cmds for proper usage of entry-dev
Consolidates ports a bit.
Updates serai-docker-tests from "compose" to "build".
* Only write a new dockerfile if it's distinct
Preserves the updated time metadata.
* Update serai-docker-tests
* Correct the path Dockerfiles are built from
* Correct inclusion of orchestration folder in Docker builds
* Correct debug/release flagging in the cargo command
Apparently, --debug isn't an effective NOP yet an error.
* Correct path used to run the Serai node within a Dockerfile
* Correct path in Monero Dockerfile
* Attempt storing monerod in /usr/bin
* Use sudo to move into /usr/bin in CI
* Correct 18.3.0 to 18.3.1
* Escape * with quotes
* Update deny.toml, ADD orchestration in runtime Dockerfile
* Add --detach to the Monero GH CI
* Diversify dockerfiles by network
* Fixes to network-diversified orchestration
* Bitcoin and Monero testnet scripts
* Permissions and tweaks
* Flatten scripts folders
* Add missing folder specification to Monero Dockerfile
* Have monero-wallet-rpc specify the monerod login
* Have the Docker CMD specify env variables inserted at time of Dockerfile generation
They're overrideable with the global enviornment as for tests. This enables
variable generation in orchestrator and output to productionized Docker files
without creating a life-long file within the Docker container.
* Don't add Dockerfiles into Docker containers now that they have secrets
Solely add the source code for them as needed to satisfy the workspace bounds.
* Download arm64 Monero on arm64
* Ensure constant host architecture when reproducibly building the wasm
Host architecture, for some reason, can effect the generated code despite the
target architecture always being foreign to the host architecture.
* Randomly generate infrastructure keys
* Have orchestrator generate a key, be able to create/start containers
* Ensure bash is used over sh
* Clean dated docs
* Change how quoting occurs
* Standardize to sh
* Have Docker test build the dev Dockerfiles
* Only key_gen once
* cargo update
Adds a patch for zstd and reconciles the breaking nightly change which just
occurred.
* Use a dedicated network for Serai
Also fixes SERAI_HOSTNAME passed to coordinator.
* Support providing a key over the env for the Serai node
* Enable and document running daemons for tests via serai-orchestrator
Has running containers under the dev network port forward the RPC ports.
* Use volumes for bitcoin/monero
* Use bitcoin's run.sh in GH CI
* Only use the volume for testnet (not dev)
* Route validators for any active set through sc-authority-discovery
Additionally adds an RPC route to retrieve their P2P addresses.
* Have the coordinator get peers from substrate
* Have the RPC return one address, not up to 3
Prevents the coordinator from believing it has 3 peers when it has one.
* Add missing feature to serai-client
* Correct network argument in serai-client for p2p_validators call
* Add a test in serai-client to check DHT population with a much quicker failure than the coordinator tests
* Update to latest Substrate
Removes distinguishing BABE/AuthorityDiscovery keys which causes
sc_authority_discovery to populate as desired.
* Update to a properly tagged substrate commit
* Add all dialed to peers to GossipSub
* cargo fmt
* Reduce common code in serai-coordinator-tests with amore involved new_test
* Use a recursive async function to spawn `n` DockerTests with the necessary networking configuration
* Merge UNIQUE_ID and ONE_AT_A_TIME
* Tidy up the new recursive code in tests/coordinator
* Use a Mutex in CONTEXT to let it be set multiple times
* Make complimentary edits to full-stack tests
* Augment coordinator P2p connection logs
* Drop lock acquisitions before recursing
* Better scope lock acquisitions in full-stack, preventing a deadlock
* Ensure OUTER_OPS is reset across the test boundary
* Add cargo deny allowance for dockertest fork
Slight downscope which helps combat the antipattern which is the futures glob
crate. While futures_util is still a large crate, it has better defaults and
is smaller by virtue of not pulling the executor.
* Add SignalsConfig to chain_spec
* Correct multiexp feature flagging for rand_core std
* Remove bincode for borsh
Replaces a non-canonical encoding with a canonical encoding which additionally
should be faster.
Also fixes an issue where we used bincode in transcripts where it cannot be
trusted.
This ended up fixing a myriad of other bugs observed, unfortunately.
Accordingly, it either has to be merged or the bug fixes from it must be ported
to a new PR.
* Make serde optional, minimize usage
* Make borsh an optional dependency of substrate/ crates
* Remove unused dependencies
* Use [u8; 64] where possible in the processor messages
* Correct borsh feature flagging
Not currently used, notably increases our dependency tree.
I wouldn't remove it if we planned to use it. From my understanding, all
benchmarking will be per pallet, voiding our need to have this for the node.
* Move pallet-asset-conversion
* update licensing
* initial integration
* Integrate Currency & Assets types
* integrate liquidity tokens
* fmt
* integrate dex pallet tests
* fmt
* compilation error fixes
* integrate dex benchmarks
* fmt
* cargo clippy
* replace all occurrences of "asset" with "coin"
* add the actual add liq/swap logic to in-instructions
* add client side & tests
* fix deny
* Lint and changes
- Renames InInstruction::AddLiquidity to InInstruction::SwapAndAddLiquidity
- Makes create_pool an internal function
- Makes dex-pallet exclusively create pools against a native coin
- Removes various fees
- Adds new crates to GH workflow
* Fix rebase artifacts
* Correct other rebase artifact
* Correct CI specification for liquidity-tokens
* Correct primitives' test to the standardized pallet account scheme
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
* initial implementation
* add function to get a balance of an account
* add support for multiple coins
* rename pallet to "coins-pallet"
* replace balances, assets and tokens pallet with coins pallet in runtime
* add total supply info
* update client side for new Coins pallet
* handle fees
* bug fixes
* Update FeeAccount test
* Fmt
* fix pr comments
* remove extraneous Imbalance type
* Minor tweaks
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
Sets a stake requirement of 100k for Serai and Monero, as Serai doesn't have
stake requirements and Monero isn't expected to see as much
volume/institutional support as Bitcoin/Ethereum.
* initial staking pallet
* add staking pallet to runtime
* support session rotation for serai
* optimizations & cleaning
* fix deny
* add serai network to initial networks
* a few tweaks & comments
* fix some pr comments
* Rewrite validator-sets with logarithmic algorithms
Uses the fact the underlying DB is sorted to achieve sorting of potential
validators by stake.
Removes release of deallocated stake for now.
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
It originally wasn't an enum so software which had yet to update before an
integration wouldn't error (as now enums are strictly typed). The strict typing
is preferable though.
Updates to polkadot-v0.9.40, with a variety of dependency updates accordingly.
Substrate thankfully now uses k256 0.13, pathing the way for #256. We couldn't
upgrade to polkadot-v0.9.40 without this due to polkadot-v0.9.40 having
fundamental changes to syncing. While we could've updated tendermint, it's not
worth the continued development effort given its inability to work with
multiple validator sets.
Purges sc-tendermint. Keeps tendermint-machine for #163.
Closes#137, #148, #157, #171. #96 and #99 should be re-scoped/clarified. #134
and #159 also should be clarified. #169 is also no longer a priority since
we're only considering temporal deployments of tendermint. #170 also isn't
since we're looking at effectively sharded validator sets, so there should
be no singular large set needing high performance.
The original intent was to use inherent transactions to prevent needing to vote
on-chain, which would spam the chain with worthless votes. Inherent
transactions, and our Tendermint library, would use the BFT's processs voting
to also vote on all included transactions. This perfectly collapses integrity
voting creating *no additional on-chain costs*.
Unfortunately, this led to issues such as #6, along with questions of validator
scalability when all validators are expencted to participate in consensus (in
order to vote on if the included instructions are valid). This has been
summarized in #241.
With this change, we can remove Tendermint from Substrate. This greatly
decreases our complexity. While I'm unhappy with the amount of time spent on
it, just to reach this conclusion, thankfully tendermint-machine itself is
still usable for #163. This also has reached a tipping point recently as the
polkadot-v0.9.40 branch of substrate changed how syncing works, requiring
further changes to sc-tendermint. These have no value if we're just going to
get rid of it later, due to fundamental design issues, yet I would like to
keep Substrate updated.
This should be followed by moving back to GRANDPA, enabling closing most open
Tendermint issues.
Please note the current in-instructions-pallet does not actually verify the
included signature yet. It's marked TODO, despite this bing critical.
There already should only be one validator set operating per network. This
formalizes that. Then, validator sets used to be able to operate over multiple
networks. That is no longer possible.
This formalization increases validator set flexibility while also allowing the
ability to formalize the definiton of tokens (which is necessary to define a
gas asset).
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
* Use Monero-compatible additional TX keys
This still sends a fingerprinting flare up if you send to a subaddress which
needs to be fixed. Despite that, Monero no should no longer fail to scan TXs
from monero-serai regarding additional keys.
Previously it failed becuase we supplied one key as THE key, and n-1 as
additional. Monero expects n for additional.
This does correctly select when to use THE key versus when to use the additional
key when sending. That removes the ability for recipients to fingerprint
monero-serai by receiving to a standard address yet needing to use an additional
key.
* Add tokens_primitives
Moves OutInstruction from in-instructions.
Turns Destination into OutInstruction.
* Correct in-instructions DispatchClass
* Add initial tokens pallet
* Don't allow pallet addresses to equal identity
* Add support for InInstruction::transfer
Requires a cargo update due to modifications made to serai-dex/substrate.
Successfully mints a token to a SeraiAddress.
* Bind InInstructions to an amount
* Add a call filter to the runtime
Prevents worrying about calls to the assets pallet/generally tightens things
up.
* Restore Destination
It was meged into OutInstruction, yet it didn't make sense for OutInstruction
to contain a SeraiAddress.
Also deletes the excessively dated Scenarios doc.
* Split PublicKey/SeraiAddress
Lets us define a custom Display/ToString for SeraiAddress.
Also resolves an oddity where PublicKey would be encoded as String, not
[u8; 32].
* Test burning tokens/retrieving OutInstructions
Modularizes processor_coinUpdates into a shared testing utility.
* Misc lint
* Don't use PolkadotExtrinsicParams
* Initial work on an In Inherents pallet
* Add an event for when a batch is executed
* Add a dummy provider for InInstructions
* Add in-instructions to the node
* Add the Serai runtime API to the processor
* Move processor tests around
* Build a subxt Client around Serai
* Successfully get Batch events from Serai
Renamed processor/substrate to processor/serai.
* Much more robust InInstruction pallet
* Implement the workaround from https://github.com/paritytech/subxt/issues/602
* Initial prototype of processor generated InInstructions
* Correct PendingCoins data flow for InInstructions
* Minor lint to in-instructions
* Remove the global Serai connection for a partial re-impl
* Correct ID handling of the processor test
* Workaround the delay in the subscription
* Make an unwrap an if let Some, remove old comments
* Lint the processor toml
* Rebase and update
* Move substrate/in-instructions to substrate/in-instructions/pallet
* Start an in-instructions primitives lib
* Properly update processor to subxt 0.24
Also corrects failures from the rebase.
* in-instructions cargo update
* Implement IsFatalError
* is_inherent -> true
* Rename in-instructions crates and misc cleanup
* Update documentation
* cargo update
* Misc update fixes
* Replace height with block_number
* Update processor src to latest subxt
* Correct pipeline for InInstructions testing
* Remove runtime::AccountId for serai_primitives::NativeAddress
* Rewrite the in-instructions pallet
Complete with respect to the currently written docs.
Drops the custom serializer for just using SCALE.
Makes slight tweaks as relevant.
* Move instructions' InherentDataProvider to a client crate
* Correct doc gen
* Add serde to in-instructions-primitives
* Add in-instructions-primitives to pallet
* Heights -> BlockNumbers
* Get batch pub test loop working
* Update in instructions pallet terminology
Removes the ambiguous Coin for Update.
Removes pending/artificial latency for furture client work.
Also moves to using serai_primitives::Coin.
* Add a BlockNumber primitive
* Belated cargo fmt
* Further document why DifferentBatch isn't fatal
* Correct processor sleeps
* Remove metadata at compile time, add test framework for Serai nodes
* Remove manual RPC client
* Simplify update test
* Improve re-exporting behavior of serai-runtime
It now re-exports all pallets underneath it.
* Add a function to get storage values to the Serai RPC
* Update substrate/ to latest substrate
* Create a dedicated crate for the Serai RPC
* Remove unused dependencies in substrate/
* Remove unused dependencies in coins/
Out of scope for this branch, just minor and path of least resistance.
* Use substrate/serai/client for the Serai RPC lib
It's a bit out of place, since these client folders are intended for the node to
access pallets and so on. This is for end-users to access Serai as a whole.
In that sense, it made more sense as a top level folder, yet that also felt
out of place.
* Move InInstructions test to serai-client for now
* Final cleanup
* Update deny.toml
* Cargo.lock update from merging develop
* Update nightly
Attempt to work around the current CI failure, which is a Rust ICE.
We previously didn't upgrade due to clippy 10134, yet that's been reverted.
* clippy
* clippy
* fmt
* NativeAddress -> SeraiAddress
* Sec fix on non-provided updates and doc fixes
* Add Serai as a Coin
Necessary in order to swap to Serai.
* Add a BlockHash type, used for batch IDs
* Remove origin from InInstruction
Makes InInstructionTarget. Adds RefundableInInstruction with origin.
* Document storage items in in-instructions
* Rename serai/client/tests/serai.rs to updates.rs
It only tested publishing updates and their successful acceptance.
* Initial work on a Validator Sets pallet
* Update Validator Set docs per current discussions
* Update validator-sets primitives and storage handling
* Add validator set pallets to deny.toml
* Remove Curve from primitives
Since we aren't reusing keys across coins, there's no reason for it to be
on-chain (as previously planned).
* Update documentation on Validator Sets
* Use Twox64Concat instead of Identity
Ensures an even distribution of keys. While xxhash is breakable, these keys
aren't manipulatable by users.
* Add math ops on Amount and define a coin as 1e8
* Add validator-sets to the runtime and remove contracts
Also removes the randomness pallet which was only required by the contracts
runtime.
Does not remove the contracts folder yet so they can still be referred to while
validator-sets is under development. Does remove them from Cargo.toml.
* Add vote function to validator-sets
* Remove contracts folder
* Create an event for the Validator Sets pallet
* Remove old contracts crates from deny.toml
* Remove line from staking branch
* Remove staking from runtime
* Correct VS Config in runtime
* cargo update
* Resolve a few PR comments on terminology
* Create a serai-primitives crate
Move types such as Amount/Coin out of validator-sets. Will be expanded in the
future.
* Fixes for last commit
* Don't reserve set 0
* Further fixes
* Add files meant for last commit
* Remove Staking transfer