Commit graph

1793 commits

Author SHA1 Message Date
Luke Parker
32a9a33226
Adjust sync test timeout to resolve infreuqent failure
This isn't an unacceptable timeout. It matches a prior timeout. I'm unsure why
it's now needed to be extended though. My best guess is the test runtime is
single threaded and there's now new overhead in the task management (or perhaps
higher latency now that messages per-tributary is serialized).
2023-09-26 17:28:41 -04:00
Luke Parker
2508633de9
Add a next block notification system to Tributary
Also adds a loop missing from the prior commit.
2023-09-25 23:20:51 -04:00
Luke Parker
7312428a44
P2P task per Tributary, not per message 2023-09-25 22:58:40 -04:00
Luke Parker
e1801b57c9
Dedicated tasks per-Processor in coordinator
This isn't meaningful yet, as we still have serialized reading messages from
Processors, yet is a step closer.
2023-09-25 22:38:29 -04:00
Luke Parker
60491a091f
Improve handling of tasks in coordinator, one per Tributary scanner 2023-09-25 20:33:14 -04:00
Luke Parker
9f3840d1cf
Localize Tributary HashMaps, offering flexibility and removing contention 2023-09-25 19:28:53 -04:00
Luke Parker
7120bddc6f
Move where we trigger DKGs for safety reasons 2023-09-25 18:27:16 -04:00
Luke Parker
77f7794452
Remove lazy_static for proper use of channels 2023-09-25 18:23:52 -04:00
Luke Parker
62a1a45135
Move where we create the readers to prevent only creating readers for present-at-boot tributaries
Also renames publish_transaction to publish_signed_transaction.
2023-09-25 18:07:29 -04:00
Luke Parker
0440e60645
Move heartbeat_tributaries from Tributary to TributaryReader
Reduces contention.
2023-09-25 17:15:38 -04:00
Luke Parker
4babf898d7
Implement deterministic nonces for Tributary transactions 2023-09-25 15:42:39 -04:00
Luke Parker
ca69f97fef
Add support for multiple multisigs to the processor (#377)
* Design and document a multisig rotation flow

* Make Scanner::eventualities a HashMap so it's per-key

* Don't drop eventualities, always follow through on them

Technical improvements made along the way.

* Start creating an isolate object to manage multisigs, which doesn't require being a signer

Removes key from SubstrateBlock.

* Move Scanner/Scheduler under multisigs

* Move Batch construction into MultisigManager

* Clarify "should" in Multisig Rotation docs

* Add block_number to MultisigManager, as it controls the scanner

* Move sign_plans into MultisigManager

Removes ThresholdKeys from prepare_send.

* Make SubstrateMutable an alias for MultisigManager

* Rewrite Multisig Rotation

The prior scheme had an exploit possible where funds were sent to the old
multisig, then burnt on Serai to send from the new multisig, locking liquidity
for 6 hours. While a fee could be applied to stragglers, to make this attack
unprofitable, the newly described scheme avoids all this.

* Add mini

mini is a miniature version of Serai, emphasizing Serai's nature as a
collection of independent clocks. The intended use is to identify race
conditions and prove protocols are comprehensive regarding when certain clocks
tick.

This uses loom, a prior candidate for evaluating the processor/coordinator as
free of race conditions (#361).

* Use mini to prove a race condition in the current multisig rotation docs, and prove safety of alternatives

Technically, the prior commit had mini prove the race condition.

The docs currently say the activation block of the new multisig is the block
after the next Batch's. If the two next Batches had already entered the
mempool, prior to set_keys being called, the second next Batch would be
expected to contain the new key's data yet fail to as the key wasn't public
when the Batch was actually created.

The naive solution is to create a Batch, publish it, wait until it's included,
and only then scan the next block. This sets a bound of
`Batch publication time < block time`. Optimistically, we can publish a Batch
in 24s while our shortest block time is 2m. Accordingly, we should be fine with
the naive solution which doesn't take advantage of throughput. #333 may
significantly change latency however and require an algorithm whose throughput
exceeds the rate of blocks created.

In order to re-introduce parallelization, enabling throughput, we need to
define a safe range of blocks to scan without Serai ordering the first one.
mini demonstrates safety of scanning n blocks Serai hasn't acknowledged, so
long as the first is scanned before block n+1 is (shifting the n-block window).

The docs will be updated next, to reflect this.

* Fix Multisig Rotation

I believe this is finally good enough to be final.

1) Fixes the race condition present in the prior document, as demonstrated by
mini.

`Batch`s for block `n` and `n+1`, may have been in the mempool when a
multisig's activation block was set to `n`. This would cause a potentially
distinct `Batch` for `n+1`, despite `n+1` already having a signed `Batch`.

2) Tightens when UIs should use the new multisig to prevent eclipse attacks,
and protection against `Batch` publication delays.

3) Removes liquidity fragmentation by tightening flow/handling of latency.

4) Several clarifications and documentation of reasoning.

5) Correction of "prior multisig" to "all prior multisigs" regarding historical
verification, with explanation why.

* Clarify terminology in mini

Synchronizes it from my original thoughts on potential schema to the design
actually created.

* Remove most of processor's README for a reference to docs/processor

This does drop some misc commentary, though none too beneficial. The section on
scanning, deemed sufficiently beneficial, has been moved to a document and
expanded on.

* Update scanner TODOs in line with new docs

* Correct documentation on Bitcoin::Block::time, and Block::time

* Make the scanner in MultisigManager no longer public

* Always send ConfirmKeyPair, regardless of if in-set

* Cargo.lock changes from a prior commit

* Add a policy document on defining a Canonical Chain

I accidentally committed a version of this with a few headers earlier, and this
is a proper version.

* Competent MultisigManager::new

* Update processor's comments

* Add mini to copied files

* Re-organize Scanner per multisig rotation document

* Add RUST_LOG trace targets to e2e tests

* Have the scanner wait once it gets too far ahead

Also bug fixes.

* Add activation blocks to the scanner

* Split received outputs into existing/new in MultisigManager

* Select the proper scheduler

* Schedule multisig activation as detailed in documentation

* Have the Coordinator assert if multiple `Batch`s occur within a block

While the processor used to have ack_up_to_block, enabling skips in the block
acked, support for this was removed while reworking it for multiple multisigs.
It should happen extremely infrequently.

While it would still be beneficial to have, if multiple `Batch`s could occur
within a block (with the complexity here not being worth adding that ban as a
policy), multiple `Batch`s were blocked for DoS reasons.

* Schedule payments to the proper multisig

* Correct >= to <

* Use the new multisig's key for change on schedule

* Don't report External TXs to prior multisig once deprecated

* Forward from the old multisig to the new one at all opportunities

* Move unfulfilled payments in queue from prior to new multisig

* Create MultisigsDb, splitting it out of MainDb

Drops the call to finish_signing from the Signer. While this will cause endless
re-attempts, the Signer will still consider them completed and drop them,
making this an O(n) cost at boot even if we did nothing from here.

The MultisigManager should call finish_signing once the Scanner completes the
Eventuality.

* Don't check Scanner-emitted completions, trust they are completions

Prevents needing to use async code to mark the completion and creates a
fault-free model. The current model, on fault, would cause a lack of marked
completion in the signer.

* Fix a possible panic in the processor

A shorter-chain reorg could cause this assert to trip. It's fixed by
de-duplicating the data, as the assertion checked consistency. Without the
potential for inconsistency, it's unnecessary.

* Document why an existing TODO isn't valid

* Change when we drop payments for being to the change address

The earlier timing prevents creating Plans solely to the branch address,
causing the payments to be dropped, and the TX to become an effective
aggregation TX.

* Extensively document solutions to Eventualities being potentially created after having already scanned their resolutions

* When closing, drop External/Branch outputs which don't cause progress

* Properly decide if Change outputs should be forward or not when closing

This completes all code needed to make the old multisig have a finite lifetime.

* Commentary on forwarding schemes

* Provide a 1 block window, with liquidity fragmentation risks, due to latency

On Bitcoin, this will be 10 minutes for the relevant Batch to be confirmed. On
Monero, 2 minutes. On Ethereum, ~6 minutes.

Also updates the Multisig Rotation document with the new forwarding plan.

* Implement transaction forwarding from old multisig to new multisig

Identifies a fault where Branch outputs which shouldn't be dropped may be, if
another output fulfills their next step. Locking Branch fulfillment down to
only Branch outputs is not done in this commit, but will be in the next.

* Only let Branch outputs fulfill branches

* Update TODOs

* Move the location of handling signer events to avoid a race condition

* Avoid a deadlock by using a RwLock on a single txn instead of two txns

* Move Batch ID out of the Scanner

* Increase from one block of latency on new keys activation to two

For Monero, this offered just two minutes when our latency to publish a Batch
is around a minute already. This does increase the time our liquidity can be
fragmented by up to 20 minutes (Bitcoin), yet it's a stupid attack only
possible once a week (when we rotate). Prioritizing normal users' transactions
not being subject to forwarding is more important here.

Ideally, we'd not do +2 blocks yet plus `time`, such as +10 minutes, making
this agnostic of the underlying network's block scheduling. This is a
complexity not worth it.

* Split MultisigManager::substrate_block into multiple functions

* Further tweaks to substrate_block

* Acquire a lock on all Scanner operations after calling ack_block

Gives time to call register_eventuality and initiate signing.

* Merge sign_plans into substrate_block

Also ensure the Scanner's lock isn't prematurely released.

* Use a HashMap to pass to-be-forwarded instructions, not the DB

* Successfully determine in ClosingExisting

* Move from 2 blocks of latency when rotating to 10 minutes

Superior as noted in 6d07af92ce10cfd74c17eb3400368b0150eb36d7, now trivial to
implement thanks to prior commit.

* Add note justifying measuring time in blocks when rotating

* Implement delaying of outputs received early to the new multisig per specification

* Documentation on why Branch outputs don't have the race condition concerns Change do

Also ensures 6 hours is at least N::CONFIRMATIONS, for sanity purposes.

* Remove TODO re: sanity checking Eventualities

We sanity check the Plan the Eventuality is derived from, and the Eventuality
is handled moments later (in the same file, with a clear call path). There's no
reason to add such APIs to Eventualities for a sanity check given that.

* Add TODO(now) for TODOs which must be done in this branch

Also deprecates a pair of TODOs to TODO2, and accepts the flow of the Signer
having the Eventuality.

* Correct errors in potential/future flow descriptions

* Accept having a single Plan Vec

Per the following code consuming it, there's no benefit to bifurcating it by
key.

* Only issue sign_transaction on boot for the proper signer

* Only set keys when participating in their construction

* Misc progress

Only send SubstrateBlockAck when we have a signer, as it's only used to tell
the Tributary of what Plans are being signed in response to this block.

Only immediately sets substrate_signer if session is 0.

On boot, doesn't panic if we don't have an active key (as we wouldn't if only
joining the next multisig). Continues.

* Correctly detect and set retirement block

Modifies the retirement block from first block meeting requirements to block
CONFIRMATIONS after.

Adds an ack flow to the Scanner's Confirmed event and Block event to accomplish
this, which may deadlock at this time (will be fixed shortly).

Removes an invalid await (after a point declared unsafe to use await) from
MultisigsManager::next_event.

* Remove deadlock in multisig_completed and document alternative

The alternative is simpler, albeit less efficient. There's no reason to adopt
it now, yet perhaps if it benefits modeling?

* Handle the final step of retirement, dropping the old key and setting new to existing

* Remove TODO about emitting a Block on every step

If we emit on NewAsChange, we lose the purpose of the NewAsChange period.

The only concern is if we reach ClosingExisting, and nothing has happened, then
all coins will still be in the old multisig until something finally does. This
isn't a problem worth solving, as it's latency under exceptional dead time.

* Add TODO about potentially not emitting a Block event for the reitrement block

* Restore accidentally deleted CI file

* Pair of slight tweaks

* Add missing if statement

* Disable an assertion when testing

One of the test flows currently abuses the Scanner in a way triggering it.
2023-09-25 09:48:15 -04:00
Luke Parker
fe19e8246e
cargo update
Updates past the yanked rustls-webpki, reduces tree size by one.
2023-09-24 08:31:13 -04:00
Luke Parker
c62d9b448f
Use a Vec for the Monero generators, preventing its massive stack usage
The amount of stack usage did cause issues on m1 computers.
2023-09-20 04:31:16 -04:00
Luke Parker
98ab6acbd5
cargo update, removing 5 items from tree 2023-09-20 04:30:46 -04:00
Luke Parker
092f17932a
Document requirement on rootless Docker 2023-09-19 12:59:04 -04:00
Luke Parker
e455332e01
Resolve #369 2023-09-19 12:55:30 -04:00
Luke Parker
a9468bf355
Pin CI from stable to 1.72.1
Enables better detection of regressions in Rust, a few of which 1.72.1 fixes.
2023-09-19 11:43:21 -04:00
Luke Parker
3d464c4736
apt update before install in workflow 2023-09-15 14:54:55 -04:00
Luke Parker
142552f024
Correct workflows with missing toolchain annotations 2023-09-15 14:36:47 -04:00
Luke Parker
e3a7ee4927
Pin to exact GH actions, preventing ACE in CI
Also updates actions.
2023-09-15 14:30:18 -04:00
Luke Parker
9eaaa7d2e8
Document H1's mismatch between the FROST preprint and IETF draft 2023-09-15 14:16:15 -04:00
Luke Parker
8adef705c3
Update wasmtime due to CVE-2023-41880 2023-09-15 14:06:39 -04:00
Luke Parker
3fd6d45b3e
Use base58-monero 2, removing a git dependency 2023-09-15 13:59:29 -04:00
Luke Parker
d263413e36
Fixes for schnorrkel/dalek updates 2023-09-12 10:02:20 -04:00
Luke Parker
6f8a5d0ede
Sane char_le_bits 2023-09-12 09:37:48 -04:00
Luke Parker
24bdd7ed9b
Bump dalek-ff-group version
Prior commit fixed random, which could generate points outside of the prime
subgroup.
2023-09-12 09:00:42 -04:00
Luke Parker
aa724c06bc
Start relying on curve25519-dalek's group feature
Removes git dependency for schnorrkel as well, now that schnorrkel has updated.
2023-09-12 08:56:30 -04:00
Luke Parker
1e6655408e
cargo update
Bites the bullet on ethers 2.0.9 (now 2.0.10).
2023-09-12 07:47:03 -04:00
Luke Parker
9ab43407e1
Ignore NewSet events for Serai in the coordinator
The coordinator has nothing to do in this case.
2023-09-08 09:55:19 -04:00
Luke Parker
7ac0de3a8d
Correct binding properties of Bitcoin eventuality
Eventualities need to be binding not just to a plan, yet to the execution of
the plan (the outputs). Bitcoin's Eventuality definition short-cutted this
under a honest multisig assumption, causing the following issue:

If multisig n+1 is verifying multisig n's actions, as detailed in
multi-multisig's document on multisig rotation, it'll check no outstanding
eventualities exist. If we solely bind to the plan, a malicious multisig n
could steal outbound payments yet cause the plan to be marked as successfully
completed.

By modifying the eventuality to also include the expected outputs, this is no
longer possible. Binding to the expected input is preserved in order to remain
binding to the plan (allowing two plans with the same output-set to co-exist).
2023-09-08 05:21:18 -04:00
Luke Parker
06a6cd29b0
Set nodelay on coordinator's P2P sockets 2023-09-06 22:57:33 -04:00
Luke Parker
2472ec7ba8
Don't attempt parsing truncated InInstructions 2023-09-02 17:18:04 -04:00
Luke Parker
69c3fad7ce
cargo fmt 2023-09-02 16:32:42 -04:00
Luke Parker
bd9a05feef
Document UTXO solvency modeling 2023-09-02 16:11:01 -04:00
Luke Parker
7d8e08d5b4
Use scale instead of bincode throughout processor-messages/processor DB
scale is canonical, bincode is not.
2023-09-02 07:54:09 -04:00
Luke Parker
f7e49e1f90
Update Rust nightly
Supersedes #368.

Adds exceptions for unwrap_or_default due to preference against Default's
ambiguity.
2023-09-02 01:24:09 -04:00
Luke Parker
cd4c3a6c88
Correct publication of Completed Tributary TXs 2023-09-02 00:50:54 -04:00
Luke Parker
fddc605c65
Define a proper Topic (Zone + ID)
Removes the inefficiency of recognized_topic for attempt returning None if the
topic isn't recognized.
2023-09-01 01:21:15 -04:00
Luke Parker
2ad6b38be9
Prefix root keys in coordinator with "coordinator" to prevent conflicts with tributary 2023-09-01 01:00:24 -04:00
Luke Parker
fda90e23c9
Reduce and clarify data flow in Tributary scanner 2023-09-01 00:59:10 -04:00
Luke Parker
3f3f6b2d0c
Properly route attempt around DkgConfirmer 2023-09-01 00:16:43 -04:00
Luke Parker
fa8ff62b09
Remove sender_i from DkgShares
It was a piece of duplicated data used to achieve context-less
de)serialization. This new Vec code is a bit tricker to first read, yet overall
clean and removes a potential fault.

Saves 2 bytes from DkgShares messages.
2023-09-01 00:03:56 -04:00
Luke Parker
5113ab9ec4
Move SignCompleted to Unsigned to cause de-duplication amongst honest validators 2023-08-31 23:39:36 -04:00
Luke Parker
9b7cb688ed
Have Batch contain Block and batch ID, ensuring eclipsed validators don't publish invalid shares
See prior commit message for more info.

With the plan for the batch sign ID to be just 5 bytes (potentially 4), this
does incur a +5 bytes cost compared to the ExternalBlock system *even in the
standard case*. The simplicity remains preferred at this time.
2023-08-31 23:04:39 -04:00
Luke Parker
9a5f8fc5dd
Replace ExternalBlock with Batch
The initial TODO was simply to use one ExternalBlock per all batches in the
block. This would require publishing ExternalBlock after the last batch,
requiring knowing the last batch. While we could add such a pipeline, it'd
require:

1) Initial preprocesses using a distinct message from BatchPreprocess
2) An additional message sent after all BatchPreprocess are sent

Unfortunately, both would require tweaks to the SubstrateSigner which aren't
worth the complexity compared to the solution here, at least, not at this time.

While this will cause, if a Tributary is signing a block whose total batch data
exceeds 25 kB, to use multiple transactions which could be optimized out by
'better' local data pipelining, that's an extreme edge case. Given the temporal
nature of each Tributary, it's also an acceptable edge.

This does no longer achieve synchrony over external blocks accordingly. While
signed batches have synchrony, as they embed their block hash, batches being
signed don't have cryptographic synchrony on their contents. This means
validators who are eclipsed may produce invalid shares, as they sign a
different batch. This will be introduced in a follow-up commit.
2023-08-31 23:00:25 -04:00
Luke Parker
2dc35193c9
Handle batch n+1 being signed before batch n is 2023-08-31 22:09:34 -04:00
Luke Parker
9bf24480f4
Spawn an async test per P2P message to try and resolve latency issues 2023-08-31 02:35:50 -04:00
Luke Parker
3af9dc5d6f
Tweak Heartbeat configuration so LibP2P can be expected to deliver messages within latency window 2023-08-31 01:33:52 -04:00
Luke Parker
148bc380fe
Add assert on edge case requiring a validator with 34% and a broken invariant 2023-08-31 01:08:40 -04:00