Commit graph

76 commits

Author SHA1 Message Date
Luke Parker
05219c3ce8
Windows Clippy (#525)
* Add windows clippy

* Adjust build-dependencies for Linux/Windows

* Specifically use bash as a shell to try and get rustup to work on Windows

* Use bash for the call to echo
2024-01-31 19:10:39 -05:00
Luke Parker
2d1443eb8a Add machete CI job now that machete allows whitelisting false positives 2023-12-11 23:06:44 -05:00
Luke Parker
91905284bf Have the CI check the lockfile isn't stale
Prevents a commit review from passing, yet then the next commit 'adding' 100
new dependencies.
2023-12-05 09:13:48 -05:00
Luke Parker
7c9b581723
Remove dtolnay's rust-toolchain action (#442)
* Remove dtolnay's rust-toolchain action

I believe our rust-toolchain.toml handles its use case exactly.

I don't believe this'll work, as it'd require rustup install a cargo stub
before any toolchain is installed, yet I want to confirm it doesn't.

* Place quotes around nightly toolchain version

* Put toolchain before options to resolve what appears to be a bug in rustup's help strings

* Add wasm32-unkknown-unknown to clippy workflow
2023-11-20 02:31:22 -05:00
Luke Parker
b37a0db538
Move where the RISC-V toolchain is installed during the no-std workflow 2023-11-19 22:45:51 -05:00
Luke Parker
05b975dff9
Rust 1.74
Adds a Rust toolchain file to be less disruptive to developers who don't keep
their toolchain synchronized (by now having rustup automatically synchronize).

Hopefully helps resolve how +nightly clippy may pass for the coordinator, yet
building would fail due to stable's (hopefully prior?) failure to model some
async functions re: Send/Sync.

Also adds rust-src as a component in preparation of
https://github.com/paritytech/polkadot-sdk/pull/2217
2023-11-19 17:47:46 -05:00
Luke Parker
351436a258
Dockerfile Parts (#428)
* De-duplicate Dockerfiles by using a bash file to concatenate common parts

Resolves #375.

Dockerfiles are still committed to the repo to avoid a dependency on bash.

* Add a CI job to confirm the committed dockerfiles are the currently generated ones

* Create dedicated Dockerfiles per processor network

Ensures the compromising of network-specific dependencies doesn't lead to a
compromise of the build process for all processors.

* Dockerfile corrections

* Correct call to build processor Docker image in tests/processor
2023-11-12 23:55:15 -05:00
akildemir
d015ee96a3
Dex improvements (#422)
* remove dex traits&balance types

* remove liq tokens pallet in favor of coins-pallet instance

* fix tests & benchmarks

* remove liquidity tokens trait

* fix CI

* fix pr comments

* Slight renamings

* Add burn_with_instruction as a negative to LiquidityTokens CallFilter

* Remove use of One, Zero, Saturating taits in dex pallet

---------

Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2023-11-12 06:37:31 -05:00
Luke Parker
b8ac8e697b
Add missing crate to tests, remove no longer present RUSTSEC ignore 2023-11-05 12:11:08 -05:00
akildemir
899a9604e1
Add Dex pallet (#407)
* Move pallet-asset-conversion

* update licensing

* initial integration

* Integrate Currency & Assets types

* integrate liquidity tokens

* fmt

* integrate dex pallet tests

* fmt

* compilation error fixes

* integrate dex benchmarks

* fmt

* cargo clippy

* replace all occurrences of "asset" with "coin"

* add the actual add liq/swap logic to in-instructions

* add client side & tests

* fix deny

* Lint and changes

- Renames InInstruction::AddLiquidity to InInstruction::SwapAndAddLiquidity
- Makes create_pool an internal function
- Makes dex-pallet exclusively create pools against a native coin
- Removes various fees
- Adds new crates to GH workflow

* Fix rebase artifacts

* Correct other rebase artifact

* Correct CI specification for liquidity-tokens

* Correct primitives' test to the standardized pallet account scheme

---------

Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2023-11-05 12:02:34 -05:00
Luke Parker
87fdc8ce35
Use Build Dependencies over Test Dependencies where we can 2023-10-26 15:15:29 -04:00
Luke Parker
86ff0ae71b
No longer run processor tests again when testing against 0.17.3.2
Even though the intent was to test against 0.17.3.2, and a Monero 0.17.3.2 node
was running, the processor now uses docker which will always use 0.18.
Accordingly, while the intent was valid, it was pointless.

This is unfortunate, as testing against 0.17 helped protect against edge cases.
The infra to preserve their tests isn't worth the benefit we'd gain from said
tests however.
2023-10-26 14:29:51 -04:00
Luke Parker
08180cc563
Resolve #405 2023-10-23 07:56:43 -04:00
Luke Parker
fbf51e53ec
Resolve #327
Also runs `cargo update` and moves where we install the wasm toolchain in the
Dockerfile for better caching properties.
2023-10-23 00:45:00 -04:00
akildemir
fdfce9e207
Coins pallet (#399)
* initial implementation

* add function to get a balance of an account

* add support for multiple coins

* rename pallet to "coins-pallet"

* replace balances, assets and tokens pallet with coins pallet in runtime

* add total supply info

* update client side for new Coins pallet

* handle fees

* bug fixes

* Update FeeAccount test

* Fmt

* fix pr comments

* remove extraneous Imbalance type

* Minor tweaks

---------

Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2023-10-19 06:22:21 -04:00
Luke Parker
985795e99d
Remove unused packages as part of build dependencies
The reproducible runtime test failed due to running out of space. If we have
multiple tests failing due to out of space, and all of our tests have these
unused, it makes sense just to always so uninstall.

Also extends the time limit of reproducible-runtime, as 2h has been hit a few
times before.
2023-10-10 21:09:45 -04:00
Luke Parker
b2ed2e961c
Correct rust version used in CI/orchestration 2023-10-05 18:24:21 -04:00
Luke Parker
7e27315207
Attempt to reduce full-stack CI disk usage 2023-09-27 21:00:32 -04:00
Luke Parker
ca69f97fef
Add support for multiple multisigs to the processor (#377)
* Design and document a multisig rotation flow

* Make Scanner::eventualities a HashMap so it's per-key

* Don't drop eventualities, always follow through on them

Technical improvements made along the way.

* Start creating an isolate object to manage multisigs, which doesn't require being a signer

Removes key from SubstrateBlock.

* Move Scanner/Scheduler under multisigs

* Move Batch construction into MultisigManager

* Clarify "should" in Multisig Rotation docs

* Add block_number to MultisigManager, as it controls the scanner

* Move sign_plans into MultisigManager

Removes ThresholdKeys from prepare_send.

* Make SubstrateMutable an alias for MultisigManager

* Rewrite Multisig Rotation

The prior scheme had an exploit possible where funds were sent to the old
multisig, then burnt on Serai to send from the new multisig, locking liquidity
for 6 hours. While a fee could be applied to stragglers, to make this attack
unprofitable, the newly described scheme avoids all this.

* Add mini

mini is a miniature version of Serai, emphasizing Serai's nature as a
collection of independent clocks. The intended use is to identify race
conditions and prove protocols are comprehensive regarding when certain clocks
tick.

This uses loom, a prior candidate for evaluating the processor/coordinator as
free of race conditions (#361).

* Use mini to prove a race condition in the current multisig rotation docs, and prove safety of alternatives

Technically, the prior commit had mini prove the race condition.

The docs currently say the activation block of the new multisig is the block
after the next Batch's. If the two next Batches had already entered the
mempool, prior to set_keys being called, the second next Batch would be
expected to contain the new key's data yet fail to as the key wasn't public
when the Batch was actually created.

The naive solution is to create a Batch, publish it, wait until it's included,
and only then scan the next block. This sets a bound of
`Batch publication time < block time`. Optimistically, we can publish a Batch
in 24s while our shortest block time is 2m. Accordingly, we should be fine with
the naive solution which doesn't take advantage of throughput. #333 may
significantly change latency however and require an algorithm whose throughput
exceeds the rate of blocks created.

In order to re-introduce parallelization, enabling throughput, we need to
define a safe range of blocks to scan without Serai ordering the first one.
mini demonstrates safety of scanning n blocks Serai hasn't acknowledged, so
long as the first is scanned before block n+1 is (shifting the n-block window).

The docs will be updated next, to reflect this.

* Fix Multisig Rotation

I believe this is finally good enough to be final.

1) Fixes the race condition present in the prior document, as demonstrated by
mini.

`Batch`s for block `n` and `n+1`, may have been in the mempool when a
multisig's activation block was set to `n`. This would cause a potentially
distinct `Batch` for `n+1`, despite `n+1` already having a signed `Batch`.

2) Tightens when UIs should use the new multisig to prevent eclipse attacks,
and protection against `Batch` publication delays.

3) Removes liquidity fragmentation by tightening flow/handling of latency.

4) Several clarifications and documentation of reasoning.

5) Correction of "prior multisig" to "all prior multisigs" regarding historical
verification, with explanation why.

* Clarify terminology in mini

Synchronizes it from my original thoughts on potential schema to the design
actually created.

* Remove most of processor's README for a reference to docs/processor

This does drop some misc commentary, though none too beneficial. The section on
scanning, deemed sufficiently beneficial, has been moved to a document and
expanded on.

* Update scanner TODOs in line with new docs

* Correct documentation on Bitcoin::Block::time, and Block::time

* Make the scanner in MultisigManager no longer public

* Always send ConfirmKeyPair, regardless of if in-set

* Cargo.lock changes from a prior commit

* Add a policy document on defining a Canonical Chain

I accidentally committed a version of this with a few headers earlier, and this
is a proper version.

* Competent MultisigManager::new

* Update processor's comments

* Add mini to copied files

* Re-organize Scanner per multisig rotation document

* Add RUST_LOG trace targets to e2e tests

* Have the scanner wait once it gets too far ahead

Also bug fixes.

* Add activation blocks to the scanner

* Split received outputs into existing/new in MultisigManager

* Select the proper scheduler

* Schedule multisig activation as detailed in documentation

* Have the Coordinator assert if multiple `Batch`s occur within a block

While the processor used to have ack_up_to_block, enabling skips in the block
acked, support for this was removed while reworking it for multiple multisigs.
It should happen extremely infrequently.

While it would still be beneficial to have, if multiple `Batch`s could occur
within a block (with the complexity here not being worth adding that ban as a
policy), multiple `Batch`s were blocked for DoS reasons.

* Schedule payments to the proper multisig

* Correct >= to <

* Use the new multisig's key for change on schedule

* Don't report External TXs to prior multisig once deprecated

* Forward from the old multisig to the new one at all opportunities

* Move unfulfilled payments in queue from prior to new multisig

* Create MultisigsDb, splitting it out of MainDb

Drops the call to finish_signing from the Signer. While this will cause endless
re-attempts, the Signer will still consider them completed and drop them,
making this an O(n) cost at boot even if we did nothing from here.

The MultisigManager should call finish_signing once the Scanner completes the
Eventuality.

* Don't check Scanner-emitted completions, trust they are completions

Prevents needing to use async code to mark the completion and creates a
fault-free model. The current model, on fault, would cause a lack of marked
completion in the signer.

* Fix a possible panic in the processor

A shorter-chain reorg could cause this assert to trip. It's fixed by
de-duplicating the data, as the assertion checked consistency. Without the
potential for inconsistency, it's unnecessary.

* Document why an existing TODO isn't valid

* Change when we drop payments for being to the change address

The earlier timing prevents creating Plans solely to the branch address,
causing the payments to be dropped, and the TX to become an effective
aggregation TX.

* Extensively document solutions to Eventualities being potentially created after having already scanned their resolutions

* When closing, drop External/Branch outputs which don't cause progress

* Properly decide if Change outputs should be forward or not when closing

This completes all code needed to make the old multisig have a finite lifetime.

* Commentary on forwarding schemes

* Provide a 1 block window, with liquidity fragmentation risks, due to latency

On Bitcoin, this will be 10 minutes for the relevant Batch to be confirmed. On
Monero, 2 minutes. On Ethereum, ~6 minutes.

Also updates the Multisig Rotation document with the new forwarding plan.

* Implement transaction forwarding from old multisig to new multisig

Identifies a fault where Branch outputs which shouldn't be dropped may be, if
another output fulfills their next step. Locking Branch fulfillment down to
only Branch outputs is not done in this commit, but will be in the next.

* Only let Branch outputs fulfill branches

* Update TODOs

* Move the location of handling signer events to avoid a race condition

* Avoid a deadlock by using a RwLock on a single txn instead of two txns

* Move Batch ID out of the Scanner

* Increase from one block of latency on new keys activation to two

For Monero, this offered just two minutes when our latency to publish a Batch
is around a minute already. This does increase the time our liquidity can be
fragmented by up to 20 minutes (Bitcoin), yet it's a stupid attack only
possible once a week (when we rotate). Prioritizing normal users' transactions
not being subject to forwarding is more important here.

Ideally, we'd not do +2 blocks yet plus `time`, such as +10 minutes, making
this agnostic of the underlying network's block scheduling. This is a
complexity not worth it.

* Split MultisigManager::substrate_block into multiple functions

* Further tweaks to substrate_block

* Acquire a lock on all Scanner operations after calling ack_block

Gives time to call register_eventuality and initiate signing.

* Merge sign_plans into substrate_block

Also ensure the Scanner's lock isn't prematurely released.

* Use a HashMap to pass to-be-forwarded instructions, not the DB

* Successfully determine in ClosingExisting

* Move from 2 blocks of latency when rotating to 10 minutes

Superior as noted in 6d07af92ce10cfd74c17eb3400368b0150eb36d7, now trivial to
implement thanks to prior commit.

* Add note justifying measuring time in blocks when rotating

* Implement delaying of outputs received early to the new multisig per specification

* Documentation on why Branch outputs don't have the race condition concerns Change do

Also ensures 6 hours is at least N::CONFIRMATIONS, for sanity purposes.

* Remove TODO re: sanity checking Eventualities

We sanity check the Plan the Eventuality is derived from, and the Eventuality
is handled moments later (in the same file, with a clear call path). There's no
reason to add such APIs to Eventualities for a sanity check given that.

* Add TODO(now) for TODOs which must be done in this branch

Also deprecates a pair of TODOs to TODO2, and accepts the flow of the Signer
having the Eventuality.

* Correct errors in potential/future flow descriptions

* Accept having a single Plan Vec

Per the following code consuming it, there's no benefit to bifurcating it by
key.

* Only issue sign_transaction on boot for the proper signer

* Only set keys when participating in their construction

* Misc progress

Only send SubstrateBlockAck when we have a signer, as it's only used to tell
the Tributary of what Plans are being signed in response to this block.

Only immediately sets substrate_signer if session is 0.

On boot, doesn't panic if we don't have an active key (as we wouldn't if only
joining the next multisig). Continues.

* Correctly detect and set retirement block

Modifies the retirement block from first block meeting requirements to block
CONFIRMATIONS after.

Adds an ack flow to the Scanner's Confirmed event and Block event to accomplish
this, which may deadlock at this time (will be fixed shortly).

Removes an invalid await (after a point declared unsafe to use await) from
MultisigsManager::next_event.

* Remove deadlock in multisig_completed and document alternative

The alternative is simpler, albeit less efficient. There's no reason to adopt
it now, yet perhaps if it benefits modeling?

* Handle the final step of retirement, dropping the old key and setting new to existing

* Remove TODO about emitting a Block on every step

If we emit on NewAsChange, we lose the purpose of the NewAsChange period.

The only concern is if we reach ClosingExisting, and nothing has happened, then
all coins will still be in the old multisig until something finally does. This
isn't a problem worth solving, as it's latency under exceptional dead time.

* Add TODO about potentially not emitting a Block event for the reitrement block

* Restore accidentally deleted CI file

* Pair of slight tweaks

* Add missing if statement

* Disable an assertion when testing

One of the test flows currently abuses the Scanner in a way triggering it.
2023-09-25 09:48:15 -04:00
Luke Parker
a9468bf355
Pin CI from stable to 1.72.1
Enables better detection of regressions in Rust, a few of which 1.72.1 fixes.
2023-09-19 11:43:21 -04:00
Luke Parker
3d464c4736
apt update before install in workflow 2023-09-15 14:54:55 -04:00
Luke Parker
142552f024
Correct workflows with missing toolchain annotations 2023-09-15 14:36:47 -04:00
Luke Parker
e3a7ee4927
Pin to exact GH actions, preventing ACE in CI
Also updates actions.
2023-09-15 14:30:18 -04:00
Luke Parker
1838c37ecf
Full stack test framework 2023-08-27 18:37:12 -04:00
Luke Parker
76a30fd572
Support no-std builds of bitcoin-serai
Arguably not meaningful, as it adds the scanner yet not the RPC, and no signing
code since modular-frost doesn't support no-std yet. It's a step in the right
direction though.
2023-08-21 08:56:37 -04:00
Luke Parker
f366d65d4b
Add RUST_BACKTRACE=1 to .github
Should help resolve the coordinator tests, which are failing in the current CI.
Presumably a timeout which is too low for the CI's slower runners.
2023-08-14 11:59:26 -04:00
Luke Parker
aab8a417db
Have the Coordinator scan the Substrate genesis block
Also adds a workflow for running tests/coordinator.
2023-08-02 12:18:50 -04:00
Luke Parker
a8c7bb96c8
Add a crate to test the runtime can be reproducibly built 2023-07-27 21:42:26 -04:00
Luke Parker
4949793c3f
Clear docker cache after building in CI
We're at the CI storage limits, so hopefully this helps.
2023-07-25 21:09:40 -04:00
Luke Parker
5703591eb2
Extend critria to run Docker tests
The unit tests should be sufficient for these cases, making this exraneous, yet
better to be complete than at risk.
2023-07-24 02:56:58 -04:00
Luke Parker
523a055b74
Add processor Docker tests
Adds tests/docker for code common to Docker-based tests.
2023-07-21 14:08:42 -04:00
Luke Parker
900298b94b
CI tweaks 2023-07-20 19:34:10 -04:00
Luke Parker
9effd5ccdc
Add a Docker-based test for the message-queue service 2023-07-20 18:53:11 -04:00
Luke Parker
808a633e4d
Split CI to reduce tests run
common/ is now only run when common is edited. crypto/ when common/ or crypto/.
coins/ when common/ or crypto/ or coins/. The rest of the tests are run
whenever any package is edited (as they're all inter-connected).
2023-07-17 01:06:56 -04:00
Luke Parker
0a367bfbda
Add common crate to access env variables
In the future, we should use a proper secret store (not just env variables).
This lets us update one block of code and not n in the future.
2023-07-17 00:53:05 -04:00
Luke Parker
5424886d63
Again
I called git commit --amend without calling git add . again :(
2023-07-14 13:13:38 -04:00
Luke Parker
2bebe0755d
Corrections to prior commit 2023-07-14 13:11:01 -04:00
Luke Parker
f0ce6e6388
Split up tests in CI to avoid node storage limits 2023-07-14 13:02:58 -04:00
Luke Parker
8ce8657d34
Correct how Monero integration tests are run 2023-07-05 19:11:52 -04:00
Luke Parker
239800cfcf
Update monero-tests workflow to new name for the processor 2023-07-03 09:12:29 -04:00
Luke Parker
385ed2e97a
Build no-std tests with RISC-V 32 IMAC
Turns out wasm still has std, making it suboptimal to use here.
2023-06-28 12:26:53 -04:00
Luke Parker
5765d1d278
Update to May's nightly
Doesn't use the PR due to the needed changes.
2023-05-01 04:58:50 -04:00
Luke Parker
e0820759c0
Tweak tests workflow 2023-04-24 06:16:43 -04:00
Luke Parker
8c74576cf0
Add a test to the coordinator for running a Tributary
Impls a LocalP2p for testing.

Moves rebroadcasting into Tendermint, since it's what knows if a message is
fully valid + original.

Removes TributarySpec::validators() HashMap, as its non-determinism caused
different instances to have different round robin schedules. It was already
prior moved to a Vec for this issue, so I'm unsure why this remnant existed.

Also renames the GH no-std workflow from the prior commit.
2023-04-22 10:49:52 -04:00
Luke Parker
1e448dec21
Add no_std support to transcript, dalek-ff-group, ed448, ciphersuite, multiexp, schnorr, and monero-generators
transcript, dalek-ff-group, ed449, and ciphersuite are all usable with no_std
alone. The rest additionally require alloc.

Part of #279.
2023-04-22 04:38:47 -04:00
Luke Parker
66eaf6ab61
Remove the code for the CI to spawn a Serai node
The serai-client test runner controls the node on its end.

Also bumps the Monero version.
2023-03-20 01:07:43 -04:00
Luke Parker
59891594aa
Fix processor's determionation of protocol to support integration tests
I'm really unhappy with a cfg(test) within the codebase. The double checking of
it makes it tolerable though, especially when compared to dropping these tests.
2023-03-19 21:05:13 -04:00
Luke Parker
780b79c3d8
Properly run processor Monero tests
Since it wasn't being compiled with the Monero feature, it wasn't running the
Monero tests.
2023-03-17 13:33:50 -04:00
Luke Parker
ba82dac18c
Processor (#259)
* Initial work on a message box

* Finish message-box (untested)

* Expand documentation

* Embed the recipient in the signature challenge

Prevents a message from A -> B from being read as from A -> C.

* Update documentation by bifurcating sender/receiver

* Panic on receiving an invalid signature

If we've received an invalid signature in an authenticated system, a 
service is malicious, critically faulty (equivalent to malicious), or 
the message layer has been compromised (or is otherwise critically 
faulty).

Please note a receiver who handles a message they shouldn't will trigger 
this. That falls under being critically faulty.

* Documentation and helper methods

SecureMessage::new and SecureMessage::serialize.

Secure Debug for MessageBox.

* Have SecureMessage not be serialized by default

Allows passing around in-memory, if desired, and moves the error from 
decrypt to new (which performs deserialization).

Decrypt no longer has an error since it panics if given an invalid 
signature, due to this being intranet code.

* Explain and improve nonce handling

Includes a missing zeroize call.

* Rebase to latest develop

Updates to transcript 0.2.0.

* Add a test for the MessageBox

* Export PrivateKey and PublicKey

* Also test serialization

* Add a key_gen binary to message_box

* Have SecureMessage support Serde

* Add encrypt_to_bytes and decrypt_from_bytes

* Support String ser via base64

* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes

* Directly operate with values supporting Borsh

* Use bincode instead of Borsh

By staying inside of serde, we'll support many more structs. While 
bincode isn't canonical, we don't need canonicity on an authenticated, 
internal system.

* Turn PrivateKey, PublicKey into structs

Uses Zeroizing for the PrivateKey per #150.

* from_string functions intended for loading from an env

* Use &str for PublicKey from_string (now from_str)

The PrivateKey takes the String to take ownership of its memory and 
zeroize it. That isn't needed with PublicKeys.

* Finish updating from develop

* Resolve warning

* Use ZeroizingAlloc on the key_gen binary

* Move message-box from crypto/ to common/

* Move key serialization functions to ser

* add/remove functions in MessageBox

* Implement Hash on dalek_ff_group Points

* Make MessageBox generic to its key

Exposes a &'static str variant for internal use and a RistrettoPoint 
variant for external use.

* Add Private to_string as deprecated

Stub before more competent tooling is deployed.

* Private to_public

* Test both Internal and External MessageBox, only use PublicKey in the pub API

* Remove panics on invalid signatures

Leftover from when this was solely internal which is now unsafe.

* Chicken scratch a Scanner task

* Add a write function to the DKG library

Enables writing directly to a file.

Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.

* Make dkg::encryption pub

* Remove encryption from MessageBox

* Use a 64-bit block number in Substrate

We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.

While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.

* Misc crypto lints

* Get the scanner scratch to compile

* Initial scanner test

* First few lines of scheduler

* Further work on scheduler, solidify API

* Define Scheduler TX format

* Branch creation algorithm

* Document when the branch algorithm isn't perfect

* Only scanned confirmed blocks

* Document Coin

* Remove Canonical/ChainNumber from processor

The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.

* Add README documenting processor flow

* Use Zeroize on substrate primitives

* Define messages from/to the processor

* Correct over-specified versioning

* Correct build re: in_instructions::primitives

* Debug/some serde in crypto/

* Use a struct for ValidatorSetInstance

* Add a processor key_gen task

Redos DB handling code.

* Replace trait + impl with wrapper struct

* Add a key confirmation flow to the key gen task

* Document concerns on key_gen

* Start on a signer task

* Add Send to FROST traits

* Move processor lib.rs to main.rs

Adds a dummy main to reduce clippy dead_code warnings.

* Further flesh out main.rs

* Move the DB trait to AsRef<[u8]>

* Signer task

* Remove a panic in bitcoin when there's insufficient funds

Unchecked underflow.

* Have Monero's mine_block mine one block, not 10

It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.

* Test signer

* Replace channel expects with log statements

The expects weren't problematic and had nicer code. They just clutter test
output.

* Remove the old wallet file

It predates the coordinator design and shouldn't be used.

* Rename tests/scan.rs to tests/scanner.rs

* Add a wallet test

Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.

* Work on a run function

Triggers a clippy ICE.

* Resolve clippy ICE

The issue was the non-fully specified lambda in signer.

* Add KeyGenEvent and KeyGenOrder

Needed so we get KeyConfirmed messages from the key gen task.

While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.

* Expand scanner test

* Clarify processor documentation

* Have the Scanner load keys on boot/save outputs to disk

* Use Vec<u8> for Block ID

Much more flexible.

* Panic if we see the same output multiple times

* Have the Scanner DB mark itself as corrupt when doing a multi-put

This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.

* Have DST'd DB keys accept AsRef<[u8]>

* Restore polling all signers

Writes a custom future to do so.

Also loads signers on boot using what the scanner claims are active keys.

* Schedule OutInstructions

Adds a data field to Payment.

Also cleans some dead code.

* Panic if we create an invalid transaction

Saves the TX once it's successfully signed so if we do panic, we have a copy.

* Route coordinator messages to their respective signer

Requires adding key to the SignId.

* Send SignTransaction orders for all plans

* Add a timer to retry sign_plans when prepare_send fails

* Minor fmt'ing

* Basic Fee API

* Move the change key into Plan

* Properly route activation_number

* Remove ScannerEvent::Block

It's not used under current designs

* Nicen logs

* Add utilities to get a block's number

* Have main issue AckBlock

Also has a few misc lints.

* Parse instructions out of outputs

* Tweak TODOs and remove an unwrap

* Update Bitcoin max input/output quantity

* Only read one piece of data from Monero

Due to output randomization, it's infeasible.

* Embed plan IDs into the TXs they create

We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.

The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.

For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).

* Don't use OP_RETURN to encode the plan ID on Bitcoin

We can use the inputs to distinguih identical-output plans without issue.

* Update OP_RETURN data access

It's not required to be the last output.

* Add Eventualities to Monero

An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.

In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).

Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.

The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.

While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.

If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.

This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.

While this could be locked to the multisig feature, there's no practical
benefit to doing so.

* Add support for encoding Monero address to instructions

* Move Serai's Monero address encoding into serai-client

serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.

Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.

* Reorganize file layout a bit, add feature flags to processor

* Tidy up ETH Dockerfile

* Add Bitcoin address encoding

* Move Bitcoin::Address to serai-client's

* Comment where tweaking needs to happen

* Add an API to check if a plan was completed in a specific TX

This allows any participating signer to submit the TX ID to prevent further
signing attempts.

Also performs some API cleanup.

* Minimize FROST dependencies

* Use a seeded RNG for key gen

* Tweak keys from Key gen

* Test proper usage of Branch/Change addresses

Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.

* Also test spending the change output

* Add queued_plans to the Scheduler

queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.

Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.

* Add missing tweak_keys call

* Correct decoy selection height handling

* Add a few log statements to the scheduler

* Simplify test's get_block_number

* Simplify, while making more robust, branch address handling in Scheduler

* Have fees deducted from payments

Corrects Monero's handling of fees when there's no change address.

Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.

* Add comment to Monero

* Consolidate BTC/XMR prepare_send code

These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.

* Ban integrated addresses

The reasoning why is accordingly documented.

* Tidy TODOs/dust handling

* Update README TODO

* Use a determinisitic protocol version in Monero

* Test rebuilt KeyGen machines function as expected

* Use a more robust KeyGen entropy system

* Add DB TXNs

Also load entropy from env

* Add a loop for processing messages from substrate

Allows detecting if we're behind, and if so, waiting to handle the message

* Set Monero MAX_INPUTS properly

The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.

* Distinguish TODOs into TODO and TODO2s

TODO2s are for after protonet

* Zeroize secret share repr in ThresholdCore write

* Work on Eventualities

Adds serialization and stops signing when an eventuality is proven.

* Use a more robust DB key schema

* Update to {k, p}256 0.12

* cargo +nightly clippy

* cargo update

* Slight message-box tweaks

* Update to recent Monero merge

* Add a Coordinator trait for communication with coordinator

* Remove KeyGenHandle for just KeyGen

While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.

Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.

* Add a handle function to Signer

Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.

* Save transactions used to complete eventualities

* Use a more intelligent sleep in the signer

* Emit SignedTransaction with the first ID *we can still get from our node*

* Move Substrate message handling into the new coordinator recv loop

* Add handle function to Scanner

* Remove the plans timer

Enables ensuring the ordring on the handling of plans.

* Remove the outputs function which panicked if a precondition wasn't met

The new API only returns outputs upon satisfaction of the precondition.

* Convert SignerOrder::SignTransaction to a function

* Remove the key_gen object from sign_plans

* Refactor out get_fee/prepare_send into dedicated functions

* Save plans being signed to the DB

* Reload transactions being signed on boot

* Stop reloading TXs being signed (and report it to peers)

* Remove message-box from the processor branch

We don't use it here yet.

* cargo +nightly fmt

* Move back common/zalloc

* Update subxt to 0.27

* Zeroize ^1.5, not 1

* Update GitHub workflow

* Remove usage of SignId in completed
2023-03-16 22:59:40 -04:00
Luke Parker
264174644f
Further workaround #247 2023-01-31 10:48:19 -05:00