support input encoded data for bitcoin network (#486)

* add input script check

* add test

* optimizations

* bug fix

* fix pr comments

* Test SegWit-encoded data using a single output (not two)

* Remove TODO used as a question, document origins when SegWit encoding

---------

Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
This commit is contained in:
akildemir 2024-02-18 15:43:44 +03:00 committed by GitHub
parent c05c511938
commit d88aa90ec2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 338 additions and 88 deletions

View file

@ -21,7 +21,8 @@ use bitcoin_serai::{
consensus::{Encodable, Decodable}, consensus::{Encodable, Decodable},
script::Instruction, script::Instruction,
address::{NetworkChecked, Address as BAddress}, address::{NetworkChecked, Address as BAddress},
Transaction, Block, Network as BNetwork, Transaction, Block, Network as BNetwork, ScriptBuf,
opcodes::all::{OP_SHA256, OP_EQUALVERIFY},
}, },
wallet::{ wallet::{
tweak_keys, address_payload, ReceivedOutput, Scanner, TransactionError, tweak_keys, address_payload, ReceivedOutput, Scanner, TransactionError,
@ -35,10 +36,11 @@ use bitcoin_serai::bitcoin::{
secp256k1::{SECP256K1, SecretKey, Message}, secp256k1::{SECP256K1, SecretKey, Message},
PrivateKey, PublicKey, PrivateKey, PublicKey,
sighash::{EcdsaSighashType, SighashCache}, sighash::{EcdsaSighashType, SighashCache},
script::{PushBytesBuf, Builder}, script::PushBytesBuf,
absolute::LockTime, absolute::LockTime,
Amount as BAmount, Sequence, Script, Witness, OutPoint, TxOut, TxIn, Amount as BAmount, Sequence, Script, Witness, OutPoint,
transaction::Version, transaction::Version,
blockdata::transaction::{TxIn, TxOut},
}; };
use serai_client::{ use serai_client::{
@ -447,6 +449,92 @@ impl Bitcoin {
} }
} }
} }
// Expected script has to start with SHA256 PUSH MSG_HASH OP_EQUALVERIFY ..
fn segwit_data_pattern(script: &ScriptBuf) -> Option<bool> {
let mut ins = script.instructions();
// first item should be SHA256 code
if ins.next()?.ok()?.opcode()? != OP_SHA256 {
return Some(false);
}
// next should be a data push
ins.next()?.ok()?.push_bytes()?;
// next should be a equality check
if ins.next()?.ok()?.opcode()? != OP_EQUALVERIFY {
return Some(false);
}
Some(true)
}
fn extract_serai_data(tx: &Transaction) -> Vec<u8> {
// check outputs
let mut data = (|| {
for output in &tx.output {
if output.script_pubkey.is_op_return() {
match output.script_pubkey.instructions_minimal().last() {
Some(Ok(Instruction::PushBytes(data))) => return data.as_bytes().to_vec(),
_ => continue,
}
}
}
vec![]
})();
// check inputs
if data.is_empty() {
for input in &tx.input {
let witness = input.witness.to_vec();
// expected witness at least has to have 2 items, msg and the redeem script.
if witness.len() >= 2 {
let redeem_script = ScriptBuf::from_bytes(witness.last().unwrap().clone());
if Self::segwit_data_pattern(&redeem_script) == Some(true) {
data = witness[witness.len() - 2].clone(); // len() - 1 is the redeem_script
break;
}
}
}
}
data.truncate(MAX_DATA_LEN.try_into().unwrap());
data
}
#[cfg(test)]
pub fn sign_btc_input_for_p2pkh(
tx: &Transaction,
input_index: usize,
private_key: &PrivateKey,
) -> ScriptBuf {
let public_key = PublicKey::from_private_key(SECP256K1, private_key);
let main_addr = BAddress::p2pkh(&public_key, BNetwork::Regtest);
let mut der = SECP256K1
.sign_ecdsa_low_r(
&Message::from(
SighashCache::new(tx)
.legacy_signature_hash(
input_index,
&main_addr.script_pubkey(),
EcdsaSighashType::All.to_u32(),
)
.unwrap()
.to_raw_hash(),
),
&private_key.inner,
)
.serialize_der()
.to_vec();
der.push(1);
ScriptBuf::builder()
.push_slice(PushBytesBuf::try_from(der).unwrap())
.push_key(&public_key)
.into_script()
}
} }
#[async_trait] #[async_trait]
@ -571,47 +659,48 @@ impl Network for Bitcoin {
let offset_repr_ref: &[u8] = offset_repr.as_ref(); let offset_repr_ref: &[u8] = offset_repr.as_ref();
let kind = kinds[offset_repr_ref]; let kind = kinds[offset_repr_ref];
let mut data = if kind == OutputType::External { let output = Output { kind, presumed_origin: None, output, data: vec![] };
(|| {
for output in &tx.output {
if output.script_pubkey.is_op_return() {
match output.script_pubkey.instructions_minimal().last() {
Some(Ok(Instruction::PushBytes(data))) => return data.as_bytes().to_vec(),
_ => continue,
}
}
}
vec![]
})()
} else {
vec![]
};
data.truncate(MAX_DATA_LEN.try_into().unwrap());
let presumed_origin = {
let spent_output = tx.input[0].previous_output;
let mut spent_tx = spent_output.txid.as_raw_hash().to_byte_array();
spent_tx.reverse();
let spent_output = {
let mut tx;
while {
tx = self.get_transaction(&spent_tx).await;
tx.is_err()
} {
log::error!("couldn't get transaction from bitcoin node: {tx:?}");
sleep(Duration::from_secs(5)).await;
}
tx.unwrap().output.swap_remove(usize::try_from(spent_output.vout).unwrap())
};
BAddress::from_script(&spent_output.script_pubkey, BNetwork::Bitcoin)
.ok()
.and_then(Address::new)
};
let output = Output { kind, presumed_origin, output, data };
assert_eq!(output.tx_id(), tx.id()); assert_eq!(output.tx_id(), tx.id());
outputs.push(output); outputs.push(output);
} }
if outputs.is_empty() {
continue;
}
// populate the outputs with the origin and data
let presumed_origin = {
// This may identify the P2WSH output *embedding the InInstruction* as the origin, which
// would be a bit trickier to spend that a traditional output...
// There's no risk of the InInstruction going missing as it'd already be on-chain though
// We *could* parse out the script *without the InInstruction prefix* and declare that the
// origin
// TODO
let spent_output = {
let input = &tx.input[0];
let mut spent_tx = input.previous_output.txid.as_raw_hash().to_byte_array();
spent_tx.reverse();
let mut tx;
while {
tx = self.get_transaction(&spent_tx).await;
tx.is_err()
} {
log::error!("couldn't get transaction from bitcoin node: {tx:?}");
sleep(Duration::from_secs(5)).await;
}
tx.unwrap().output.swap_remove(usize::try_from(input.previous_output.vout).unwrap())
};
BAddress::from_script(&spent_output.script_pubkey, BNetwork::Bitcoin)
.ok()
.and_then(Address::new)
};
let data = Self::extract_serai_data(tx);
for output in &mut outputs {
if output.kind == OutputType::External {
output.data = data.clone();
}
output.presumed_origin = presumed_origin.clone();
}
} }
outputs outputs
@ -774,14 +863,10 @@ impl Network for Bitcoin {
let new_block = self.get_latest_block_number().await.unwrap() + 1; let new_block = self.get_latest_block_number().await.unwrap() + 1;
self self
.rpc .rpc
.rpc_call::<Vec<String>>("generatetoaddress", serde_json::json!([1, main_addr])) .rpc_call::<Vec<String>>("generatetoaddress", serde_json::json!([100, main_addr]))
.await .await
.unwrap(); .unwrap();
for _ in 0 .. 100 {
self.mine_block().await;
}
let tx = self.get_block(new_block).await.unwrap().txdata.swap_remove(0); let tx = self.get_block(new_block).await.unwrap().txdata.swap_remove(0);
let mut tx = Transaction { let mut tx = Transaction {
version: Version(2), version: Version(2),
@ -797,24 +882,7 @@ impl Network for Bitcoin {
script_pubkey: address.as_ref().script_pubkey(), script_pubkey: address.as_ref().script_pubkey(),
}], }],
}; };
tx.input[0].script_sig = Self::sign_btc_input_for_p2pkh(&tx, 0, &private_key);
let mut der = SECP256K1
.sign_ecdsa_low_r(
&Message::from(
SighashCache::new(&tx)
.legacy_signature_hash(0, &main_addr.script_pubkey(), EcdsaSighashType::All.to_u32())
.unwrap()
.to_raw_hash(),
),
&private_key.inner,
)
.serialize_der()
.to_vec();
der.push(1);
tx.input[0].script_sig = Builder::new()
.push_slice(PushBytesBuf::try_from(der).unwrap())
.push_key(&public_key)
.into_script();
let block = self.get_latest_block_number().await.unwrap() + 1; let block = self.get_latest_block_number().await.unwrap() + 1;
self.rpc.send_raw_transaction(&tx).await.unwrap(); self.rpc.send_raw_transaction(&tx).await.unwrap();

View file

@ -5,8 +5,42 @@ use dockertest::{
#[cfg(feature = "bitcoin")] #[cfg(feature = "bitcoin")]
mod bitcoin { mod bitcoin {
use std::sync::Arc;
use rand_core::OsRng;
use frost::Participant;
use bitcoin_serai::bitcoin::{
secp256k1::{SECP256K1, SecretKey, Message},
PrivateKey, PublicKey,
hashes::{HashEngine, Hash, sha256::Hash as Sha256},
sighash::{SighashCache, EcdsaSighashType},
absolute::LockTime,
Amount as BAmount, Sequence, Script, Witness, OutPoint,
address::Address as BAddress,
transaction::{Version, Transaction, TxIn, TxOut},
Network as BNetwork, ScriptBuf,
opcodes::all::{OP_SHA256, OP_EQUALVERIFY},
};
use scale::Encode;
use sp_application_crypto::Pair;
use serai_client::{in_instructions::primitives::Shorthand, primitives::insecure_pair_from_name};
use tokio::{
time::{timeout, Duration},
sync::Mutex,
};
use serai_db::MemDb;
use super::*; use super::*;
use crate::networks::{Network, Bitcoin}; use crate::{
networks::{Network, Bitcoin, Output, OutputType, Block},
tests::scanner::new_scanner,
multisigs::scanner::ScannerEvent,
};
#[test] #[test]
fn test_dust_constant() { fn test_dust_constant() {
@ -19,6 +53,142 @@ mod bitcoin {
check::<IsTrue<{ Bitcoin::DUST >= bitcoin_serai::wallet::DUST }>>(); check::<IsTrue<{ Bitcoin::DUST >= bitcoin_serai::wallet::DUST }>>();
} }
#[test]
fn test_receive_data_from_input() {
let docker = spawn_bitcoin();
docker.run(|ops| async move {
let btc = bitcoin(&ops).await;
// generate a multisig address to receive the coins
let mut keys = frost::tests::key_gen::<_, <Bitcoin as Network>::Curve>(&mut OsRng)
.remove(&Participant::new(1).unwrap())
.unwrap();
<Bitcoin as Network>::tweak_keys(&mut keys);
let group_key = keys.group_key();
let serai_btc_address = <Bitcoin as Network>::external_address(group_key);
// btc key pair to send from
let private_key = PrivateKey::new(SecretKey::new(&mut rand_core::OsRng), BNetwork::Regtest);
let public_key = PublicKey::from_private_key(SECP256K1, &private_key);
let main_addr = BAddress::p2pkh(&public_key, BNetwork::Regtest);
// get unlocked coins
let new_block = btc.get_latest_block_number().await.unwrap() + 1;
btc
.rpc
.rpc_call::<Vec<String>>("generatetoaddress", serde_json::json!([100, main_addr]))
.await
.unwrap();
// create a scanner
let db = MemDb::new();
let mut scanner = new_scanner(&btc, &db, group_key, &Arc::new(Mutex::new(true))).await;
// make a transfer instruction & hash it for script.
let serai_address = insecure_pair_from_name("alice").public();
let message = Shorthand::transfer(None, serai_address.into()).encode();
let mut data = Sha256::engine();
data.input(&message);
// make the output script => msg_script(OP_SHA256 PUSH MSG_HASH OP_EQUALVERIFY) + any_script
let mut script = ScriptBuf::builder()
.push_opcode(OP_SHA256)
.push_slice(Sha256::from_engine(data).as_byte_array())
.push_opcode(OP_EQUALVERIFY)
.into_script();
// append a regular spend script
for i in main_addr.script_pubkey().instructions() {
script.push_instruction(i.unwrap());
}
// Create the first transaction
let tx = btc.get_block(new_block).await.unwrap().txdata.swap_remove(0);
let mut tx = Transaction {
version: Version(2),
lock_time: LockTime::ZERO,
input: vec![TxIn {
previous_output: OutPoint { txid: tx.txid(), vout: 0 },
script_sig: Script::new().into(),
sequence: Sequence(u32::MAX),
witness: Witness::default(),
}],
output: vec![TxOut {
value: tx.output[0].value - BAmount::from_sat(10000),
script_pubkey: ScriptBuf::new_p2wsh(&script.wscript_hash()),
}],
};
tx.input[0].script_sig = Bitcoin::sign_btc_input_for_p2pkh(&tx, 0, &private_key);
let initial_output_value = tx.output[0].value;
// send it
btc.rpc.send_raw_transaction(&tx).await.unwrap();
// Chain a transaction spending it with the InInstruction embedded in the input
let mut tx = Transaction {
version: Version(2),
lock_time: LockTime::ZERO,
input: vec![TxIn {
previous_output: OutPoint { txid: tx.txid(), vout: 0 },
script_sig: Script::new().into(),
sequence: Sequence(u32::MAX),
witness: Witness::new(),
}],
output: vec![TxOut {
value: tx.output[0].value - BAmount::from_sat(10000),
script_pubkey: serai_btc_address.as_ref().script_pubkey(),
}],
};
// add the witness script
// This is the standard script with an extra argument of the InInstruction
let mut sig = SECP256K1
.sign_ecdsa_low_r(
&Message::from(
SighashCache::new(&tx)
.p2wsh_signature_hash(0, &script, initial_output_value, EcdsaSighashType::All)
.unwrap()
.to_raw_hash(),
),
&private_key.inner,
)
.serialize_der()
.to_vec();
sig.push(1);
tx.input[0].witness.push(sig);
tx.input[0].witness.push(public_key.inner.serialize());
tx.input[0].witness.push(message.clone());
tx.input[0].witness.push(script);
// Send it immediately, as Bitcoin allows mempool chaining
btc.rpc.send_raw_transaction(&tx).await.unwrap();
// Mine enough confirmations
let block_number = btc.get_latest_block_number().await.unwrap() + 1;
for _ in 0 .. <Bitcoin as Network>::CONFIRMATIONS {
btc.mine_block().await;
}
let tx_block = btc.get_block(block_number).await.unwrap();
// verify that scanner picked up the output
let outputs =
match timeout(Duration::from_secs(30), scanner.events.recv()).await.unwrap().unwrap() {
ScannerEvent::Block { is_retirement_block, block, outputs } => {
scanner.multisig_completed.send(false).unwrap();
assert!(!is_retirement_block);
assert_eq!(block, tx_block.id());
assert_eq!(outputs.len(), 1);
assert_eq!(outputs[0].kind(), OutputType::External);
outputs
}
_ => panic!("unexpectedly got eventuality completion"),
};
// verify that the amount and message are correct
assert_eq!(outputs[0].balance().amount.0, tx.output[0].value.to_sat());
assert_eq!(outputs[0].data(), message);
});
}
fn spawn_bitcoin() -> DockerTest { fn spawn_bitcoin() -> DockerTest {
serai_docker_tests::build("bitcoin".to_string()); serai_docker_tests::build("bitcoin".to_string());

View file

@ -1,6 +1,7 @@
use core::time::Duration; use core::time::Duration;
use std::sync::Arc; use std::sync::Arc;
use ciphersuite::Ciphersuite;
use rand_core::OsRng; use rand_core::OsRng;
use frost::{Participant, tests::key_gen}; use frost::{Participant, tests::key_gen};
@ -14,6 +15,31 @@ use crate::{
multisigs::scanner::{ScannerEvent, Scanner, ScannerHandle}, multisigs::scanner::{ScannerEvent, Scanner, ScannerHandle},
}; };
pub async fn new_scanner<N: Network, D: Db>(
network: &N,
db: &D,
group_key: <N::Curve as Ciphersuite>::G,
first: &Arc<Mutex<bool>>,
) -> ScannerHandle<N, D> {
let activation_number = network.get_latest_block_number().await.unwrap();
let mut db = db.clone();
let (mut scanner, current_keys) = Scanner::new(network.clone(), db.clone());
let mut first = first.lock().await;
if *first {
assert!(current_keys.is_empty());
let mut txn = db.txn();
scanner.register_key(&mut txn, activation_number, group_key).await;
txn.commit();
for _ in 0 .. N::CONFIRMATIONS {
network.mine_block().await;
}
*first = false;
} else {
assert_eq!(current_keys.len(), 1);
}
scanner
}
pub async fn test_scanner<N: Network>(network: N) { pub async fn test_scanner<N: Network>(network: N) {
let mut keys = let mut keys =
frost::tests::key_gen::<_, N::Curve>(&mut OsRng).remove(&Participant::new(1).unwrap()).unwrap(); frost::tests::key_gen::<_, N::Curve>(&mut OsRng).remove(&Participant::new(1).unwrap()).unwrap();
@ -25,28 +51,9 @@ pub async fn test_scanner<N: Network>(network: N) {
network.mine_block().await; network.mine_block().await;
} }
let first = Arc::new(Mutex::new(true));
let activation_number = network.get_latest_block_number().await.unwrap();
let db = MemDb::new(); let db = MemDb::new();
let new_scanner = || async { let first = Arc::new(Mutex::new(true));
let mut db = db.clone(); let scanner = new_scanner(&network, &db, group_key, &first).await;
let (mut scanner, current_keys) = Scanner::new(network.clone(), db.clone());
let mut first = first.lock().await;
if *first {
assert!(current_keys.is_empty());
let mut txn = db.txn();
scanner.register_key(&mut txn, activation_number, group_key).await;
txn.commit();
for _ in 0 .. N::CONFIRMATIONS {
network.mine_block().await;
}
*first = false;
} else {
assert_eq!(current_keys.len(), 1);
}
scanner
};
let scanner = new_scanner().await;
// Receive funds // Receive funds
let block = network.test_send(N::external_address(keys.group_key())).await; let block = network.test_send(N::external_address(keys.group_key())).await;
@ -73,7 +80,7 @@ pub async fn test_scanner<N: Network>(network: N) {
let (mut scanner, outputs) = verify_event(scanner).await; let (mut scanner, outputs) = verify_event(scanner).await;
// Create a new scanner off the current DB and verify it re-emits the above events // Create a new scanner off the current DB and verify it re-emits the above events
verify_event(new_scanner().await).await; verify_event(new_scanner(&network, &db, group_key, &first).await).await;
// Acknowledge the block // Acknowledge the block
let mut cloned_db = db.clone(); let mut cloned_db = db.clone();
@ -86,7 +93,12 @@ pub async fn test_scanner<N: Network>(network: N) {
assert!(timeout(Duration::from_secs(30), scanner.events.recv()).await.is_err()); assert!(timeout(Duration::from_secs(30), scanner.events.recv()).await.is_err());
// Create a new scanner off the current DB and make sure it also does nothing // Create a new scanner off the current DB and make sure it also does nothing
assert!(timeout(Duration::from_secs(30), new_scanner().await.events.recv()).await.is_err()); assert!(timeout(
Duration::from_secs(30),
new_scanner(&network, &db, group_key, &first).await.events.recv()
)
.await
.is_err());
} }
pub async fn test_no_deadlock_in_multisig_completed<N: Network>(network: N) { pub async fn test_no_deadlock_in_multisig_completed<N: Network>(network: N) {