mirror of
https://github.com/serai-dex/serai.git
synced 2025-01-24 11:36:18 +00:00
Reorganize bulletproofs
This commit is contained in:
parent
1c4707136c
commit
d07fe34a24
5 changed files with 541 additions and 468 deletions
|
@ -4,44 +4,40 @@
|
|||
use lazy_static::lazy_static;
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint};
|
||||
use curve25519_dalek::edwards::EdwardsPoint as DalekPoint;
|
||||
|
||||
use group::{ff::Field, Group};
|
||||
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
|
||||
use dalek_ff_group::{Scalar, EdwardsPoint};
|
||||
|
||||
use multiexp::{BatchVerifier, multiexp as multiexp_const};
|
||||
|
||||
fn prove_multiexp(pairs: &[(Scalar, EdwardsPoint)]) -> EdwardsPoint {
|
||||
multiexp_const(pairs) * *INV_EIGHT
|
||||
}
|
||||
use multiexp::multiexp as multiexp_const;
|
||||
|
||||
use crate::{
|
||||
H as DALEK_H, Commitment, hash, hash_to_scalar as dalek_hash,
|
||||
ringct::{hash_to_point::raw_hash_to_point, bulletproofs::scalar_vector::*},
|
||||
serialize::write_varint,
|
||||
ringct::hash_to_point::raw_hash_to_point, serialize::write_varint,
|
||||
};
|
||||
pub(crate) use crate::ringct::bulletproofs::scalar_vector::*;
|
||||
|
||||
// Bring things into ff/group
|
||||
lazy_static! {
|
||||
static ref INV_EIGHT: Scalar = Scalar::from(8u8).invert().unwrap();
|
||||
static ref H: EdwardsPoint = EdwardsPoint(*DALEK_H);
|
||||
pub(crate) static ref INV_EIGHT: Scalar = Scalar::from(8u8).invert().unwrap();
|
||||
pub(crate) static ref H: EdwardsPoint = EdwardsPoint(*DALEK_H);
|
||||
}
|
||||
|
||||
fn hash_to_scalar(data: &[u8]) -> Scalar {
|
||||
pub(crate) fn hash_to_scalar(data: &[u8]) -> Scalar {
|
||||
Scalar(dalek_hash(data))
|
||||
}
|
||||
|
||||
// Components common between variants
|
||||
pub(crate) const MAX_M: usize = 16;
|
||||
const N: usize = 64;
|
||||
const MAX_MN: usize = MAX_M * N;
|
||||
pub(crate) const N: usize = 64;
|
||||
pub(crate) const MAX_MN: usize = MAX_M * N;
|
||||
|
||||
struct Generators {
|
||||
G: Vec<EdwardsPoint>,
|
||||
H: Vec<EdwardsPoint>,
|
||||
pub(crate) struct Generators {
|
||||
pub(crate) G: Vec<EdwardsPoint>,
|
||||
pub(crate) H: Vec<EdwardsPoint>,
|
||||
}
|
||||
|
||||
fn generators_core(prefix: &'static [u8]) -> Generators {
|
||||
pub(crate) fn generators_core(prefix: &'static [u8]) -> Generators {
|
||||
let mut res = Generators { G: Vec::with_capacity(MAX_MN), H: Vec::with_capacity(MAX_MN) };
|
||||
for i in 0 .. MAX_MN {
|
||||
let i = 2 * i;
|
||||
|
@ -58,13 +54,21 @@ fn generators_core(prefix: &'static [u8]) -> Generators {
|
|||
res
|
||||
}
|
||||
|
||||
pub(crate) fn prove_multiexp(pairs: &[(Scalar, EdwardsPoint)]) -> EdwardsPoint {
|
||||
multiexp_const(pairs) * *INV_EIGHT
|
||||
}
|
||||
|
||||
// TODO: Have this take in other, multiplied by G, and do a single multiexp
|
||||
fn vector_exponent(generators: &Generators, a: &ScalarVector, b: &ScalarVector) -> EdwardsPoint {
|
||||
pub(crate) fn vector_exponent(
|
||||
generators: &Generators,
|
||||
a: &ScalarVector,
|
||||
b: &ScalarVector,
|
||||
) -> EdwardsPoint {
|
||||
debug_assert_eq!(a.len(), b.len());
|
||||
(a * &generators.G[.. a.len()]) + (b * &generators.H[.. b.len()])
|
||||
}
|
||||
|
||||
fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar {
|
||||
pub(crate) fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar {
|
||||
let slice =
|
||||
&[cache.to_bytes().as_ref(), mash.iter().cloned().flatten().collect::<Vec<_>>().as_ref()]
|
||||
.concat();
|
||||
|
@ -72,7 +76,7 @@ fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar {
|
|||
*cache
|
||||
}
|
||||
|
||||
fn MN(outputs: usize) -> (usize, usize, usize) {
|
||||
pub(crate) fn MN(outputs: usize) -> (usize, usize, usize) {
|
||||
let logN = 6;
|
||||
debug_assert_eq!(N, 1 << logN);
|
||||
|
||||
|
@ -88,7 +92,7 @@ fn MN(outputs: usize) -> (usize, usize, usize) {
|
|||
(logM + logN, M, M * N)
|
||||
}
|
||||
|
||||
fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) {
|
||||
pub(crate) fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) {
|
||||
let (_, M, MN) = MN(commitments.len());
|
||||
|
||||
let sv = commitments.iter().map(|c| Scalar::from(c.amount)).collect::<Vec<_>>();
|
||||
|
@ -108,14 +112,14 @@ fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) {
|
|||
(aL, aR)
|
||||
}
|
||||
|
||||
fn hash_commitments<C: IntoIterator<Item = DalekPoint>>(
|
||||
pub(crate) fn hash_commitments<C: IntoIterator<Item = DalekPoint>>(
|
||||
commitments: C,
|
||||
) -> (Scalar, Vec<EdwardsPoint>) {
|
||||
let V = commitments.into_iter().map(|c| EdwardsPoint(c) * *INV_EIGHT).collect::<Vec<_>>();
|
||||
(hash_to_scalar(&V.iter().flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>()), V)
|
||||
}
|
||||
|
||||
fn alpha_rho<R: RngCore + CryptoRng>(
|
||||
pub(crate) fn alpha_rho<R: RngCore + CryptoRng>(
|
||||
rng: &mut R,
|
||||
generators: &Generators,
|
||||
aL: &ScalarVector,
|
||||
|
@ -125,7 +129,7 @@ fn alpha_rho<R: RngCore + CryptoRng>(
|
|||
(ar, (vector_exponent(generators, aL, aR) + (EdwardsPoint::generator() * ar)) * *INV_EIGHT)
|
||||
}
|
||||
|
||||
fn LR_statements(
|
||||
pub(crate) fn LR_statements(
|
||||
a: &ScalarVector,
|
||||
G_i: &[EdwardsPoint],
|
||||
b: &ScalarVector,
|
||||
|
@ -145,439 +149,5 @@ fn LR_statements(
|
|||
}
|
||||
|
||||
lazy_static! {
|
||||
static ref TWO_N: ScalarVector = ScalarVector::powers(Scalar::from(2u8), N);
|
||||
}
|
||||
|
||||
// Bulletproofs-specific
|
||||
lazy_static! {
|
||||
static ref GENERATORS: Generators = generators_core(b"bulletproof");
|
||||
static ref ONE_N: ScalarVector = ScalarVector(vec![Scalar::one(); N]);
|
||||
static ref IP12: Scalar = inner_product(&ONE_N, &TWO_N);
|
||||
}
|
||||
|
||||
// Bulletproofs+-specific
|
||||
lazy_static! {
|
||||
static ref GENERATORS_PLUS: Generators = generators_core(b"bulletproof_plus");
|
||||
static ref TRANSCRIPT_PLUS: [u8; 32] =
|
||||
EdwardsPoint(raw_hash_to_point(hash(b"bulletproof_plus_transcript"))).compress().to_bytes();
|
||||
}
|
||||
|
||||
// TRANSCRIPT_PLUS isn't a Scalar, so we need this alternative for the first hash
|
||||
fn hash_plus(mash: &[u8]) -> Scalar {
|
||||
hash_to_scalar(&[&*TRANSCRIPT_PLUS as &[u8], mash].concat())
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct OriginalStruct {
|
||||
pub(crate) A: DalekPoint,
|
||||
pub(crate) S: DalekPoint,
|
||||
pub(crate) T1: DalekPoint,
|
||||
pub(crate) T2: DalekPoint,
|
||||
pub(crate) taux: DalekScalar,
|
||||
pub(crate) mu: DalekScalar,
|
||||
pub(crate) L: Vec<DalekPoint>,
|
||||
pub(crate) R: Vec<DalekPoint>,
|
||||
pub(crate) a: DalekScalar,
|
||||
pub(crate) b: DalekScalar,
|
||||
pub(crate) t: DalekScalar,
|
||||
}
|
||||
|
||||
impl OriginalStruct {
|
||||
#[must_use]
|
||||
fn verify_core<ID: Copy, R: RngCore + CryptoRng>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
|
||||
id: ID,
|
||||
commitments: &[DalekPoint],
|
||||
) -> bool {
|
||||
// Verify commitments are valid
|
||||
if commitments.is_empty() || (commitments.len() > MAX_M) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Verify L and R are properly sized
|
||||
if self.L.len() != self.R.len() {
|
||||
return false;
|
||||
}
|
||||
|
||||
let (logMN, M, MN) = MN(commitments.len());
|
||||
if self.L.len() != logMN {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Rebuild all challenges
|
||||
let (mut cache, commitments) = hash_commitments(commitments.iter().cloned());
|
||||
let y = hash_cache(&mut cache, &[self.A.compress().to_bytes(), self.S.compress().to_bytes()]);
|
||||
|
||||
let z = hash_to_scalar(&y.to_bytes());
|
||||
cache = z;
|
||||
|
||||
let x = hash_cache(
|
||||
&mut cache,
|
||||
&[z.to_bytes(), self.T1.compress().to_bytes(), self.T2.compress().to_bytes()],
|
||||
);
|
||||
|
||||
let x_ip = hash_cache(
|
||||
&mut cache,
|
||||
&[x.to_bytes(), self.taux.to_bytes(), self.mu.to_bytes(), self.t.to_bytes()],
|
||||
);
|
||||
|
||||
let mut w = Vec::with_capacity(logMN);
|
||||
let mut winv = Vec::with_capacity(logMN);
|
||||
for (L, R) in self.L.iter().zip(&self.R) {
|
||||
w.push(hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()]));
|
||||
winv.push(cache.invert().unwrap());
|
||||
}
|
||||
|
||||
// Convert the proof from * INV_EIGHT to its actual form
|
||||
let normalize = |point: &DalekPoint| EdwardsPoint(point.mul_by_cofactor());
|
||||
|
||||
let L = self.L.iter().map(normalize).collect::<Vec<_>>();
|
||||
let R = self.R.iter().map(normalize).collect::<Vec<_>>();
|
||||
let T1 = normalize(&self.T1);
|
||||
let T2 = normalize(&self.T2);
|
||||
let A = normalize(&self.A);
|
||||
let S = normalize(&self.S);
|
||||
|
||||
let commitments = commitments.iter().map(|c| c.mul_by_cofactor()).collect::<Vec<_>>();
|
||||
|
||||
// Verify it
|
||||
let mut proof = Vec::with_capacity(4 + commitments.len());
|
||||
|
||||
let zpow = ScalarVector::powers(z, M + 3);
|
||||
let ip1y = ScalarVector::powers(y, M * N).sum();
|
||||
let mut k = -(zpow[2] * ip1y);
|
||||
for j in 1 ..= M {
|
||||
k -= zpow[j + 2] * *IP12;
|
||||
}
|
||||
let y1 = Scalar(self.t) - ((z * ip1y) + k);
|
||||
proof.push((-y1, *H));
|
||||
|
||||
proof.push((-Scalar(self.taux), G));
|
||||
|
||||
for (j, commitment) in commitments.iter().enumerate() {
|
||||
proof.push((zpow[j + 2], *commitment));
|
||||
}
|
||||
|
||||
proof.push((x, T1));
|
||||
proof.push((x * x, T2));
|
||||
verifier.queue(&mut *rng, id, proof);
|
||||
|
||||
proof = Vec::with_capacity(4 + (2 * (MN + logMN)));
|
||||
let z3 = (Scalar(self.t) - (Scalar(self.a) * Scalar(self.b))) * x_ip;
|
||||
proof.push((z3, *H));
|
||||
proof.push((-Scalar(self.mu), G));
|
||||
|
||||
proof.push((Scalar::one(), A));
|
||||
proof.push((x, S));
|
||||
|
||||
{
|
||||
let ypow = ScalarVector::powers(y, MN);
|
||||
let yinv = y.invert().unwrap();
|
||||
let yinvpow = ScalarVector::powers(yinv, MN);
|
||||
|
||||
let mut w_cache = vec![Scalar::zero(); MN];
|
||||
w_cache[0] = winv[0];
|
||||
w_cache[1] = w[0];
|
||||
for j in 1 .. logMN {
|
||||
let mut slots = (1 << (j + 1)) - 1;
|
||||
while slots > 0 {
|
||||
w_cache[slots] = w_cache[slots / 2] * w[j];
|
||||
w_cache[slots - 1] = w_cache[slots / 2] * winv[j];
|
||||
slots = slots.saturating_sub(2);
|
||||
}
|
||||
}
|
||||
|
||||
for w in &w_cache {
|
||||
debug_assert!(!bool::from(w.is_zero()));
|
||||
}
|
||||
|
||||
for i in 0 .. MN {
|
||||
let g = (Scalar(self.a) * w_cache[i]) + z;
|
||||
proof.push((-g, GENERATORS.G[i]));
|
||||
|
||||
let mut h = Scalar(self.b) * yinvpow[i] * w_cache[(!i) & (MN - 1)];
|
||||
h -= ((zpow[(i / N) + 2] * TWO_N[i % N]) + (z * ypow[i])) * yinvpow[i];
|
||||
proof.push((-h, GENERATORS.H[i]));
|
||||
}
|
||||
}
|
||||
|
||||
for i in 0 .. logMN {
|
||||
proof.push((w[i] * w[i], L[i]));
|
||||
proof.push((winv[i] * winv[i], R[i]));
|
||||
}
|
||||
verifier.queue(rng, id, proof);
|
||||
|
||||
true
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub(crate) fn verify<R: RngCore + CryptoRng>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
commitments: &[DalekPoint],
|
||||
) -> bool {
|
||||
let mut verifier = BatchVerifier::new(4 + commitments.len() + 4 + (2 * (MAX_MN + 10)));
|
||||
if self.verify_core(rng, &mut verifier, (), commitments) {
|
||||
verifier.verify_vartime()
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub(crate) fn batch_verify<ID: Copy, R: RngCore + CryptoRng>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
|
||||
id: ID,
|
||||
commitments: &[DalekPoint],
|
||||
) -> bool {
|
||||
self.verify_core(rng, verifier, id, commitments)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct PlusStruct {
|
||||
pub(crate) A: DalekPoint,
|
||||
pub(crate) A1: DalekPoint,
|
||||
pub(crate) B: DalekPoint,
|
||||
pub(crate) r1: DalekScalar,
|
||||
pub(crate) s1: DalekScalar,
|
||||
pub(crate) d1: DalekScalar,
|
||||
pub(crate) L: Vec<DalekPoint>,
|
||||
pub(crate) R: Vec<DalekPoint>,
|
||||
}
|
||||
|
||||
#[allow(clippy::large_enum_variant)]
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub enum Bulletproofs {
|
||||
Original(OriginalStruct),
|
||||
Plus(PlusStruct),
|
||||
}
|
||||
|
||||
pub(crate) fn prove<R: RngCore + CryptoRng>(
|
||||
rng: &mut R,
|
||||
commitments: &[Commitment],
|
||||
) -> Bulletproofs {
|
||||
let (logMN, M, MN) = MN(commitments.len());
|
||||
|
||||
let (aL, aR) = bit_decompose(commitments);
|
||||
let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate));
|
||||
let (alpha, A) = alpha_rho(&mut *rng, &GENERATORS, &aL, &aR);
|
||||
|
||||
let (sL, sR) =
|
||||
ScalarVector((0 .. (MN * 2)).map(|_| Scalar::random(&mut *rng)).collect::<Vec<_>>()).split();
|
||||
let (rho, S) = alpha_rho(&mut *rng, &GENERATORS, &sL, &sR);
|
||||
|
||||
let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]);
|
||||
let mut cache = hash_to_scalar(&y.to_bytes());
|
||||
let z = cache;
|
||||
|
||||
let l0 = &aL - z;
|
||||
let l1 = sL;
|
||||
|
||||
let mut zero_twos = Vec::with_capacity(MN);
|
||||
let zpow = ScalarVector::powers(z, M + 2);
|
||||
for j in 0 .. M {
|
||||
for i in 0 .. N {
|
||||
zero_twos.push(zpow[j + 2] * TWO_N[i]);
|
||||
}
|
||||
}
|
||||
|
||||
let yMN = ScalarVector::powers(y, MN);
|
||||
let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos);
|
||||
let r1 = yMN * sR;
|
||||
|
||||
let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0);
|
||||
let t2 = inner_product(&l1, &r1);
|
||||
|
||||
let tau1 = Scalar::random(&mut *rng);
|
||||
let tau2 = Scalar::random(rng);
|
||||
|
||||
let T1 = prove_multiexp(&[(t1, *H), (tau1, EdwardsPoint::generator())]);
|
||||
let T2 = prove_multiexp(&[(t2, *H), (tau2, EdwardsPoint::generator())]);
|
||||
|
||||
let x =
|
||||
hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]);
|
||||
|
||||
let mut taux = (tau2 * (x * x)) + (tau1 * x);
|
||||
for (i, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
|
||||
taux += zpow[i + 2] * gamma;
|
||||
}
|
||||
let mu = (x * rho) + alpha;
|
||||
|
||||
let l = &l0 + &(l1 * x);
|
||||
let r = &r0 + &(r1 * x);
|
||||
|
||||
let t = inner_product(&l, &r);
|
||||
|
||||
let x_ip = hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]);
|
||||
|
||||
let mut a = l;
|
||||
let mut b = r;
|
||||
|
||||
let yinv = y.invert().unwrap();
|
||||
let yinvpow = ScalarVector::powers(yinv, MN);
|
||||
|
||||
let mut G_proof = GENERATORS.G[.. a.len()].to_vec();
|
||||
let mut H_proof = GENERATORS.H[.. a.len()].to_vec();
|
||||
H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow);
|
||||
let U = *H * x_ip;
|
||||
|
||||
let mut L = Vec::with_capacity(logMN);
|
||||
let mut R = Vec::with_capacity(logMN);
|
||||
|
||||
while a.len() != 1 {
|
||||
let (aL, aR) = a.split();
|
||||
let (bL, bR) = b.split();
|
||||
|
||||
let cL = inner_product(&aL, &bR);
|
||||
let cR = inner_product(&aR, &bL);
|
||||
|
||||
let (G_L, G_R) = G_proof.split_at(aL.len());
|
||||
let (H_L, H_R) = H_proof.split_at(aL.len());
|
||||
|
||||
let L_i = prove_multiexp(&LR_statements(&aL, G_R, &bR, H_L, cL, U));
|
||||
let R_i = prove_multiexp(&LR_statements(&aR, G_L, &bL, H_R, cR, U));
|
||||
L.push(L_i);
|
||||
R.push(R_i);
|
||||
|
||||
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
|
||||
let winv = w.invert().unwrap();
|
||||
|
||||
a = (aL * w) + (aR * winv);
|
||||
b = (bL * winv) + (bR * w);
|
||||
|
||||
if a.len() != 1 {
|
||||
G_proof = hadamard_fold(G_L, G_R, winv, w);
|
||||
H_proof = hadamard_fold(H_L, H_R, w, winv);
|
||||
}
|
||||
}
|
||||
|
||||
Bulletproofs::Original(OriginalStruct {
|
||||
A: *A,
|
||||
S: *S,
|
||||
T1: *T1,
|
||||
T2: *T2,
|
||||
taux: *taux,
|
||||
mu: *mu,
|
||||
L: L.drain(..).map(|L| *L).collect(),
|
||||
R: R.drain(..).map(|R| *R).collect(),
|
||||
a: *a[0],
|
||||
b: *b[0],
|
||||
t: *t,
|
||||
})
|
||||
}
|
||||
|
||||
pub(crate) fn prove_plus<R: RngCore + CryptoRng>(
|
||||
rng: &mut R,
|
||||
commitments: &[Commitment],
|
||||
) -> Bulletproofs {
|
||||
let (logMN, M, MN) = MN(commitments.len());
|
||||
|
||||
let (aL, aR) = bit_decompose(commitments);
|
||||
let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate));
|
||||
cache = hash_plus(&cache.to_bytes());
|
||||
let (mut alpha1, A) = alpha_rho(&mut *rng, &GENERATORS_PLUS, &aL, &aR);
|
||||
|
||||
let y = hash_cache(&mut cache, &[A.compress().to_bytes()]);
|
||||
let mut cache = hash_to_scalar(&y.to_bytes());
|
||||
let z = cache;
|
||||
|
||||
let zpow = ScalarVector::even_powers(z, 2 * M);
|
||||
// d[j*N+i] = z**(2*(j+1)) * 2**i
|
||||
let mut d = vec![Scalar::zero(); MN];
|
||||
for j in 0 .. M {
|
||||
for i in 0 .. N {
|
||||
d[(j * N) + i] = zpow[j] * TWO_N[i];
|
||||
}
|
||||
}
|
||||
|
||||
let aL1 = aL - z;
|
||||
|
||||
let ypow = ScalarVector::powers(y, MN + 2);
|
||||
let mut y_for_d = ScalarVector(ypow.0[1 ..= MN].to_vec());
|
||||
y_for_d.0.reverse();
|
||||
let aR1 = (aR + z) + (y_for_d * ScalarVector(d));
|
||||
|
||||
for (j, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
|
||||
alpha1 += zpow[j] * ypow[MN + 1] * gamma;
|
||||
}
|
||||
|
||||
let mut a = aL1;
|
||||
let mut b = aR1;
|
||||
|
||||
let yinv = y.invert().unwrap();
|
||||
let yinvpow = ScalarVector::powers(yinv, MN);
|
||||
|
||||
let mut G_proof = GENERATORS_PLUS.G[.. a.len()].to_vec();
|
||||
let mut H_proof = GENERATORS_PLUS.H[.. a.len()].to_vec();
|
||||
|
||||
let mut L = Vec::with_capacity(logMN);
|
||||
let mut R = Vec::with_capacity(logMN);
|
||||
|
||||
while a.len() != 1 {
|
||||
let (aL, aR) = a.split();
|
||||
let (bL, bR) = b.split();
|
||||
|
||||
let cL = weighted_inner_product(&aL, &bR, y);
|
||||
let cR = weighted_inner_product(&(&aR * ypow[aR.len()]), &bL, y);
|
||||
|
||||
let (dL, dR) = (Scalar::random(&mut *rng), Scalar::random(&mut *rng));
|
||||
|
||||
let (G_L, G_R) = G_proof.split_at(aL.len());
|
||||
let (H_L, H_R) = H_proof.split_at(aL.len());
|
||||
|
||||
let mut L_i = LR_statements(&(&aL * yinvpow[aL.len()]), G_R, &bR, H_L, cL, *H);
|
||||
L_i.push((dL, G));
|
||||
let L_i = prove_multiexp(&L_i);
|
||||
L.push(L_i);
|
||||
|
||||
let mut R_i = LR_statements(&(&aR * ypow[aR.len()]), G_L, &bL, H_R, cR, *H);
|
||||
R_i.push((dR, G));
|
||||
let R_i = prove_multiexp(&R_i);
|
||||
R.push(R_i);
|
||||
|
||||
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
|
||||
let winv = w.invert().unwrap();
|
||||
|
||||
G_proof = hadamard_fold(G_L, G_R, winv, w * yinvpow[aL.len()]);
|
||||
H_proof = hadamard_fold(H_L, H_R, w, winv);
|
||||
|
||||
a = (&aL * w) + (aR * (winv * ypow[aL.len()]));
|
||||
b = (bL * winv) + (bR * w);
|
||||
|
||||
alpha1 += (dL * (w * w)) + (dR * (winv * winv));
|
||||
}
|
||||
|
||||
let r = Scalar::random(&mut *rng);
|
||||
let s = Scalar::random(&mut *rng);
|
||||
let d = Scalar::random(&mut *rng);
|
||||
let eta = Scalar::random(rng);
|
||||
|
||||
let A1 = prove_multiexp(&[
|
||||
(r, G_proof[0]),
|
||||
(s, H_proof[0]),
|
||||
(d, G),
|
||||
((r * y * b[0]) + (s * y * a[0]), *H),
|
||||
]);
|
||||
let B = prove_multiexp(&[(r * y * s, *H), (eta, G)]);
|
||||
let e = hash_cache(&mut cache, &[A1.compress().to_bytes(), B.compress().to_bytes()]);
|
||||
|
||||
let r1 = (a[0] * e) + r;
|
||||
let s1 = (b[0] * e) + s;
|
||||
let d1 = ((d * e) + eta) + (alpha1 * (e * e));
|
||||
|
||||
Bulletproofs::Plus(PlusStruct {
|
||||
A: *A,
|
||||
A1: *A1,
|
||||
B: *B,
|
||||
r1: *r1,
|
||||
s1: *s1,
|
||||
d1: *d1,
|
||||
L: L.drain(..).map(|L| *L).collect(),
|
||||
R: R.drain(..).map(|R| *R).collect(),
|
||||
})
|
||||
pub(crate) static ref TWO_N: ScalarVector = ScalarVector::powers(Scalar::from(2u8), N);
|
||||
}
|
||||
|
|
|
@ -8,12 +8,22 @@ use multiexp::BatchVerifier;
|
|||
use crate::{Commitment, wallet::TransactionError, serialize::*};
|
||||
|
||||
pub(crate) mod scalar_vector;
|
||||
pub(crate) mod core;
|
||||
|
||||
pub mod core;
|
||||
pub(crate) use self::core::Bulletproofs;
|
||||
use self::core::{MAX_M, OriginalStruct, PlusStruct, prove, prove_plus};
|
||||
pub(crate) mod original;
|
||||
pub(crate) mod plus;
|
||||
|
||||
pub(crate) const MAX_OUTPUTS: usize = MAX_M;
|
||||
pub(crate) use self::original::OriginalStruct;
|
||||
pub(crate) use self::plus::PlusStruct;
|
||||
|
||||
pub(crate) const MAX_OUTPUTS: usize = self::core::MAX_M;
|
||||
|
||||
#[allow(clippy::large_enum_variant)]
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub enum Bulletproofs {
|
||||
Original(OriginalStruct),
|
||||
Plus(PlusStruct),
|
||||
}
|
||||
|
||||
impl Bulletproofs {
|
||||
// TODO
|
||||
|
@ -39,14 +49,18 @@ impl Bulletproofs {
|
|||
if outputs.len() > MAX_OUTPUTS {
|
||||
return Err(TransactionError::TooManyOutputs)?;
|
||||
}
|
||||
Ok(if !plus { prove(rng, outputs) } else { prove_plus(rng, outputs) })
|
||||
Ok(if !plus {
|
||||
Bulletproofs::Original(OriginalStruct::prove(rng, outputs))
|
||||
} else {
|
||||
Bulletproofs::Plus(PlusStruct::prove(rng, outputs))
|
||||
})
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn verify<R: RngCore + CryptoRng>(&self, rng: &mut R, commitments: &[EdwardsPoint]) -> bool {
|
||||
match self {
|
||||
Bulletproofs::Original(bp) => bp.verify(rng, commitments),
|
||||
Bulletproofs::Plus(_) => unimplemented!("Bulletproofs+ verification isn't implemented"),
|
||||
Bulletproofs::Plus(bp) => bp.verify(rng, commitments),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -60,7 +74,7 @@ impl Bulletproofs {
|
|||
) -> bool {
|
||||
match self {
|
||||
Bulletproofs::Original(bp) => bp.batch_verify(rng, verifier, id, commitments),
|
||||
Bulletproofs::Plus(_) => unimplemented!("Bulletproofs+ verification isn't implemented"),
|
||||
Bulletproofs::Plus(bp) => bp.batch_verify(rng, verifier, id, commitments),
|
||||
}
|
||||
}
|
||||
|
||||
|
|
303
coins/monero/src/ringct/bulletproofs/original.rs
Normal file
303
coins/monero/src/ringct/bulletproofs/original.rs
Normal file
|
@ -0,0 +1,303 @@
|
|||
use lazy_static::lazy_static;
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint};
|
||||
|
||||
use group::{ff::Field, Group};
|
||||
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
|
||||
|
||||
use multiexp::BatchVerifier;
|
||||
|
||||
use crate::{Commitment, ringct::bulletproofs::core::*};
|
||||
|
||||
lazy_static! {
|
||||
static ref GENERATORS: Generators = generators_core(b"bulletproof");
|
||||
static ref ONE_N: ScalarVector = ScalarVector(vec![Scalar::one(); N]);
|
||||
static ref IP12: Scalar = inner_product(&ONE_N, &TWO_N);
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct OriginalStruct {
|
||||
pub(crate) A: DalekPoint,
|
||||
pub(crate) S: DalekPoint,
|
||||
pub(crate) T1: DalekPoint,
|
||||
pub(crate) T2: DalekPoint,
|
||||
pub(crate) taux: DalekScalar,
|
||||
pub(crate) mu: DalekScalar,
|
||||
pub(crate) L: Vec<DalekPoint>,
|
||||
pub(crate) R: Vec<DalekPoint>,
|
||||
pub(crate) a: DalekScalar,
|
||||
pub(crate) b: DalekScalar,
|
||||
pub(crate) t: DalekScalar,
|
||||
}
|
||||
|
||||
impl OriginalStruct {
|
||||
pub(crate) fn prove<R: RngCore + CryptoRng>(
|
||||
rng: &mut R,
|
||||
commitments: &[Commitment],
|
||||
) -> OriginalStruct {
|
||||
let (logMN, M, MN) = MN(commitments.len());
|
||||
|
||||
let (aL, aR) = bit_decompose(commitments);
|
||||
let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate));
|
||||
let (alpha, A) = alpha_rho(&mut *rng, &GENERATORS, &aL, &aR);
|
||||
|
||||
let (sL, sR) =
|
||||
ScalarVector((0 .. (MN * 2)).map(|_| Scalar::random(&mut *rng)).collect::<Vec<_>>()).split();
|
||||
let (rho, S) = alpha_rho(&mut *rng, &GENERATORS, &sL, &sR);
|
||||
|
||||
let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]);
|
||||
let mut cache = hash_to_scalar(&y.to_bytes());
|
||||
let z = cache;
|
||||
|
||||
let l0 = &aL - z;
|
||||
let l1 = sL;
|
||||
|
||||
let mut zero_twos = Vec::with_capacity(MN);
|
||||
let zpow = ScalarVector::powers(z, M + 2);
|
||||
for j in 0 .. M {
|
||||
for i in 0 .. N {
|
||||
zero_twos.push(zpow[j + 2] * TWO_N[i]);
|
||||
}
|
||||
}
|
||||
|
||||
let yMN = ScalarVector::powers(y, MN);
|
||||
let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos);
|
||||
let r1 = yMN * sR;
|
||||
|
||||
let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0);
|
||||
let t2 = inner_product(&l1, &r1);
|
||||
|
||||
let tau1 = Scalar::random(&mut *rng);
|
||||
let tau2 = Scalar::random(rng);
|
||||
|
||||
let T1 = prove_multiexp(&[(t1, *H), (tau1, EdwardsPoint::generator())]);
|
||||
let T2 = prove_multiexp(&[(t2, *H), (tau2, EdwardsPoint::generator())]);
|
||||
|
||||
let x =
|
||||
hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]);
|
||||
|
||||
let mut taux = (tau2 * (x * x)) + (tau1 * x);
|
||||
for (i, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
|
||||
taux += zpow[i + 2] * gamma;
|
||||
}
|
||||
let mu = (x * rho) + alpha;
|
||||
|
||||
let l = &l0 + &(l1 * x);
|
||||
let r = &r0 + &(r1 * x);
|
||||
|
||||
let t = inner_product(&l, &r);
|
||||
|
||||
let x_ip =
|
||||
hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]);
|
||||
|
||||
let mut a = l;
|
||||
let mut b = r;
|
||||
|
||||
let yinv = y.invert().unwrap();
|
||||
let yinvpow = ScalarVector::powers(yinv, MN);
|
||||
|
||||
let mut G_proof = GENERATORS.G[.. a.len()].to_vec();
|
||||
let mut H_proof = GENERATORS.H[.. a.len()].to_vec();
|
||||
H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow);
|
||||
let U = *H * x_ip;
|
||||
|
||||
let mut L = Vec::with_capacity(logMN);
|
||||
let mut R = Vec::with_capacity(logMN);
|
||||
|
||||
while a.len() != 1 {
|
||||
let (aL, aR) = a.split();
|
||||
let (bL, bR) = b.split();
|
||||
|
||||
let cL = inner_product(&aL, &bR);
|
||||
let cR = inner_product(&aR, &bL);
|
||||
|
||||
let (G_L, G_R) = G_proof.split_at(aL.len());
|
||||
let (H_L, H_R) = H_proof.split_at(aL.len());
|
||||
|
||||
let L_i = prove_multiexp(&LR_statements(&aL, G_R, &bR, H_L, cL, U));
|
||||
let R_i = prove_multiexp(&LR_statements(&aR, G_L, &bL, H_R, cR, U));
|
||||
L.push(L_i);
|
||||
R.push(R_i);
|
||||
|
||||
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
|
||||
let winv = w.invert().unwrap();
|
||||
|
||||
a = (aL * w) + (aR * winv);
|
||||
b = (bL * winv) + (bR * w);
|
||||
|
||||
if a.len() != 1 {
|
||||
G_proof = hadamard_fold(G_L, G_R, winv, w);
|
||||
H_proof = hadamard_fold(H_L, H_R, w, winv);
|
||||
}
|
||||
}
|
||||
|
||||
OriginalStruct {
|
||||
A: *A,
|
||||
S: *S,
|
||||
T1: *T1,
|
||||
T2: *T2,
|
||||
taux: *taux,
|
||||
mu: *mu,
|
||||
L: L.drain(..).map(|L| *L).collect(),
|
||||
R: R.drain(..).map(|R| *R).collect(),
|
||||
a: *a[0],
|
||||
b: *b[0],
|
||||
t: *t,
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
fn verify_core<ID: Copy, R: RngCore + CryptoRng>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
|
||||
id: ID,
|
||||
commitments: &[DalekPoint],
|
||||
) -> bool {
|
||||
// Verify commitments are valid
|
||||
if commitments.is_empty() || (commitments.len() > MAX_M) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Verify L and R are properly sized
|
||||
if self.L.len() != self.R.len() {
|
||||
return false;
|
||||
}
|
||||
|
||||
let (logMN, M, MN) = MN(commitments.len());
|
||||
if self.L.len() != logMN {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Rebuild all challenges
|
||||
let (mut cache, commitments) = hash_commitments(commitments.iter().cloned());
|
||||
let y = hash_cache(&mut cache, &[self.A.compress().to_bytes(), self.S.compress().to_bytes()]);
|
||||
|
||||
let z = hash_to_scalar(&y.to_bytes());
|
||||
cache = z;
|
||||
|
||||
let x = hash_cache(
|
||||
&mut cache,
|
||||
&[z.to_bytes(), self.T1.compress().to_bytes(), self.T2.compress().to_bytes()],
|
||||
);
|
||||
|
||||
let x_ip = hash_cache(
|
||||
&mut cache,
|
||||
&[x.to_bytes(), self.taux.to_bytes(), self.mu.to_bytes(), self.t.to_bytes()],
|
||||
);
|
||||
|
||||
let mut w = Vec::with_capacity(logMN);
|
||||
let mut winv = Vec::with_capacity(logMN);
|
||||
for (L, R) in self.L.iter().zip(&self.R) {
|
||||
w.push(hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()]));
|
||||
winv.push(cache.invert().unwrap());
|
||||
}
|
||||
|
||||
// Convert the proof from * INV_EIGHT to its actual form
|
||||
let normalize = |point: &DalekPoint| EdwardsPoint(point.mul_by_cofactor());
|
||||
|
||||
let L = self.L.iter().map(normalize).collect::<Vec<_>>();
|
||||
let R = self.R.iter().map(normalize).collect::<Vec<_>>();
|
||||
let T1 = normalize(&self.T1);
|
||||
let T2 = normalize(&self.T2);
|
||||
let A = normalize(&self.A);
|
||||
let S = normalize(&self.S);
|
||||
|
||||
let commitments = commitments.iter().map(|c| c.mul_by_cofactor()).collect::<Vec<_>>();
|
||||
|
||||
// Verify it
|
||||
let mut proof = Vec::with_capacity(4 + commitments.len());
|
||||
|
||||
let zpow = ScalarVector::powers(z, M + 3);
|
||||
let ip1y = ScalarVector::powers(y, M * N).sum();
|
||||
let mut k = -(zpow[2] * ip1y);
|
||||
for j in 1 ..= M {
|
||||
k -= zpow[j + 2] * *IP12;
|
||||
}
|
||||
let y1 = Scalar(self.t) - ((z * ip1y) + k);
|
||||
proof.push((-y1, *H));
|
||||
|
||||
proof.push((-Scalar(self.taux), G));
|
||||
|
||||
for (j, commitment) in commitments.iter().enumerate() {
|
||||
proof.push((zpow[j + 2], *commitment));
|
||||
}
|
||||
|
||||
proof.push((x, T1));
|
||||
proof.push((x * x, T2));
|
||||
verifier.queue(&mut *rng, id, proof);
|
||||
|
||||
proof = Vec::with_capacity(4 + (2 * (MN + logMN)));
|
||||
let z3 = (Scalar(self.t) - (Scalar(self.a) * Scalar(self.b))) * x_ip;
|
||||
proof.push((z3, *H));
|
||||
proof.push((-Scalar(self.mu), G));
|
||||
|
||||
proof.push((Scalar::one(), A));
|
||||
proof.push((x, S));
|
||||
|
||||
{
|
||||
let ypow = ScalarVector::powers(y, MN);
|
||||
let yinv = y.invert().unwrap();
|
||||
let yinvpow = ScalarVector::powers(yinv, MN);
|
||||
|
||||
let mut w_cache = vec![Scalar::zero(); MN];
|
||||
w_cache[0] = winv[0];
|
||||
w_cache[1] = w[0];
|
||||
for j in 1 .. logMN {
|
||||
let mut slots = (1 << (j + 1)) - 1;
|
||||
while slots > 0 {
|
||||
w_cache[slots] = w_cache[slots / 2] * w[j];
|
||||
w_cache[slots - 1] = w_cache[slots / 2] * winv[j];
|
||||
slots = slots.saturating_sub(2);
|
||||
}
|
||||
}
|
||||
|
||||
for w in &w_cache {
|
||||
debug_assert!(!bool::from(w.is_zero()));
|
||||
}
|
||||
|
||||
for i in 0 .. MN {
|
||||
let g = (Scalar(self.a) * w_cache[i]) + z;
|
||||
proof.push((-g, GENERATORS.G[i]));
|
||||
|
||||
let mut h = Scalar(self.b) * yinvpow[i] * w_cache[(!i) & (MN - 1)];
|
||||
h -= ((zpow[(i / N) + 2] * TWO_N[i % N]) + (z * ypow[i])) * yinvpow[i];
|
||||
proof.push((-h, GENERATORS.H[i]));
|
||||
}
|
||||
}
|
||||
|
||||
for i in 0 .. logMN {
|
||||
proof.push((w[i] * w[i], L[i]));
|
||||
proof.push((winv[i] * winv[i], R[i]));
|
||||
}
|
||||
verifier.queue(rng, id, proof);
|
||||
|
||||
true
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub(crate) fn verify<R: RngCore + CryptoRng>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
commitments: &[DalekPoint],
|
||||
) -> bool {
|
||||
let mut verifier = BatchVerifier::new(4 + commitments.len() + 4 + (2 * (MAX_MN + 10)));
|
||||
if self.verify_core(rng, &mut verifier, (), commitments) {
|
||||
verifier.verify_vartime()
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub(crate) fn batch_verify<ID: Copy, R: RngCore + CryptoRng>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
|
||||
id: ID,
|
||||
commitments: &[DalekPoint],
|
||||
) -> bool {
|
||||
self.verify_core(rng, verifier, id, commitments)
|
||||
}
|
||||
}
|
186
coins/monero/src/ringct/bulletproofs/plus.rs
Normal file
186
coins/monero/src/ringct/bulletproofs/plus.rs
Normal file
|
@ -0,0 +1,186 @@
|
|||
use lazy_static::lazy_static;
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint};
|
||||
|
||||
use group::ff::Field;
|
||||
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
|
||||
|
||||
use multiexp::BatchVerifier;
|
||||
|
||||
use crate::{
|
||||
Commitment, hash,
|
||||
ringct::{hash_to_point::raw_hash_to_point, bulletproofs::core::*},
|
||||
};
|
||||
|
||||
lazy_static! {
|
||||
static ref GENERATORS: Generators = generators_core(b"bulletproof_plus");
|
||||
static ref TRANSCRIPT: [u8; 32] =
|
||||
EdwardsPoint(raw_hash_to_point(hash(b"bulletproof_plus_transcript"))).compress().to_bytes();
|
||||
}
|
||||
|
||||
// TRANSCRIPT isn't a Scalar, so we need this alternative for the first hash
|
||||
fn hash_plus(mash: &[u8]) -> Scalar {
|
||||
hash_to_scalar(&[&*TRANSCRIPT as &[u8], mash].concat())
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct PlusStruct {
|
||||
pub(crate) A: DalekPoint,
|
||||
pub(crate) A1: DalekPoint,
|
||||
pub(crate) B: DalekPoint,
|
||||
pub(crate) r1: DalekScalar,
|
||||
pub(crate) s1: DalekScalar,
|
||||
pub(crate) d1: DalekScalar,
|
||||
pub(crate) L: Vec<DalekPoint>,
|
||||
pub(crate) R: Vec<DalekPoint>,
|
||||
}
|
||||
|
||||
impl PlusStruct {
|
||||
pub(crate) fn prove<R: RngCore + CryptoRng>(
|
||||
rng: &mut R,
|
||||
commitments: &[Commitment],
|
||||
) -> PlusStruct {
|
||||
let (logMN, M, MN) = MN(commitments.len());
|
||||
|
||||
let (aL, aR) = bit_decompose(commitments);
|
||||
let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate));
|
||||
cache = hash_plus(&cache.to_bytes());
|
||||
let (mut alpha1, A) = alpha_rho(&mut *rng, &GENERATORS, &aL, &aR);
|
||||
|
||||
let y = hash_cache(&mut cache, &[A.compress().to_bytes()]);
|
||||
let mut cache = hash_to_scalar(&y.to_bytes());
|
||||
let z = cache;
|
||||
|
||||
let zpow = ScalarVector::even_powers(z, 2 * M);
|
||||
// d[j*N+i] = z**(2*(j+1)) * 2**i
|
||||
let mut d = vec![Scalar::zero(); MN];
|
||||
for j in 0 .. M {
|
||||
for i in 0 .. N {
|
||||
d[(j * N) + i] = zpow[j] * TWO_N[i];
|
||||
}
|
||||
}
|
||||
|
||||
let aL1 = aL - z;
|
||||
|
||||
let ypow = ScalarVector::powers(y, MN + 2);
|
||||
let mut y_for_d = ScalarVector(ypow.0[1 ..= MN].to_vec());
|
||||
y_for_d.0.reverse();
|
||||
let aR1 = (aR + z) + (y_for_d * ScalarVector(d));
|
||||
|
||||
for (j, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
|
||||
alpha1 += zpow[j] * ypow[MN + 1] * gamma;
|
||||
}
|
||||
|
||||
let mut a = aL1;
|
||||
let mut b = aR1;
|
||||
|
||||
let yinv = y.invert().unwrap();
|
||||
let yinvpow = ScalarVector::powers(yinv, MN);
|
||||
|
||||
let mut G_proof = GENERATORS.G[.. a.len()].to_vec();
|
||||
let mut H_proof = GENERATORS.H[.. a.len()].to_vec();
|
||||
|
||||
let mut L = Vec::with_capacity(logMN);
|
||||
let mut R = Vec::with_capacity(logMN);
|
||||
|
||||
while a.len() != 1 {
|
||||
let (aL, aR) = a.split();
|
||||
let (bL, bR) = b.split();
|
||||
|
||||
let cL = weighted_inner_product(&aL, &bR, y);
|
||||
let cR = weighted_inner_product(&(&aR * ypow[aR.len()]), &bL, y);
|
||||
|
||||
let (dL, dR) = (Scalar::random(&mut *rng), Scalar::random(&mut *rng));
|
||||
|
||||
let (G_L, G_R) = G_proof.split_at(aL.len());
|
||||
let (H_L, H_R) = H_proof.split_at(aL.len());
|
||||
|
||||
let mut L_i = LR_statements(&(&aL * yinvpow[aL.len()]), G_R, &bR, H_L, cL, *H);
|
||||
L_i.push((dL, G));
|
||||
let L_i = prove_multiexp(&L_i);
|
||||
L.push(L_i);
|
||||
|
||||
let mut R_i = LR_statements(&(&aR * ypow[aR.len()]), G_L, &bL, H_R, cR, *H);
|
||||
R_i.push((dR, G));
|
||||
let R_i = prove_multiexp(&R_i);
|
||||
R.push(R_i);
|
||||
|
||||
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
|
||||
let winv = w.invert().unwrap();
|
||||
|
||||
G_proof = hadamard_fold(G_L, G_R, winv, w * yinvpow[aL.len()]);
|
||||
H_proof = hadamard_fold(H_L, H_R, w, winv);
|
||||
|
||||
a = (&aL * w) + (aR * (winv * ypow[aL.len()]));
|
||||
b = (bL * winv) + (bR * w);
|
||||
|
||||
alpha1 += (dL * (w * w)) + (dR * (winv * winv));
|
||||
}
|
||||
|
||||
let r = Scalar::random(&mut *rng);
|
||||
let s = Scalar::random(&mut *rng);
|
||||
let d = Scalar::random(&mut *rng);
|
||||
let eta = Scalar::random(rng);
|
||||
|
||||
let A1 = prove_multiexp(&[
|
||||
(r, G_proof[0]),
|
||||
(s, H_proof[0]),
|
||||
(d, G),
|
||||
((r * y * b[0]) + (s * y * a[0]), *H),
|
||||
]);
|
||||
let B = prove_multiexp(&[(r * y * s, *H), (eta, G)]);
|
||||
let e = hash_cache(&mut cache, &[A1.compress().to_bytes(), B.compress().to_bytes()]);
|
||||
|
||||
let r1 = (a[0] * e) + r;
|
||||
let s1 = (b[0] * e) + s;
|
||||
let d1 = ((d * e) + eta) + (alpha1 * (e * e));
|
||||
|
||||
PlusStruct {
|
||||
A: *A,
|
||||
A1: *A1,
|
||||
B: *B,
|
||||
r1: *r1,
|
||||
s1: *s1,
|
||||
d1: *d1,
|
||||
L: L.drain(..).map(|L| *L).collect(),
|
||||
R: R.drain(..).map(|R| *R).collect(),
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
fn verify_core<ID: Copy, R: RngCore + CryptoRng>(
|
||||
&self,
|
||||
_rng: &mut R,
|
||||
_verifier: &mut BatchVerifier<ID, EdwardsPoint>,
|
||||
_id: ID,
|
||||
_commitments: &[DalekPoint],
|
||||
) -> bool {
|
||||
unimplemented!("Bulletproofs+ verification isn't implemented")
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub(crate) fn verify<R: RngCore + CryptoRng>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
commitments: &[DalekPoint],
|
||||
) -> bool {
|
||||
let mut verifier = BatchVerifier::new(4 + commitments.len() + 4 + (2 * (MAX_MN + 10)));
|
||||
if self.verify_core(rng, &mut verifier, (), commitments) {
|
||||
verifier.verify_vartime()
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub(crate) fn batch_verify<ID: Copy, R: RngCore + CryptoRng>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
|
||||
id: ID,
|
||||
commitments: &[DalekPoint],
|
||||
) -> bool {
|
||||
self.verify_core(rng, verifier, id, commitments)
|
||||
}
|
||||
}
|
|
@ -6,7 +6,7 @@ use multiexp::BatchVerifier;
|
|||
|
||||
use crate::{
|
||||
Commitment, random_scalar,
|
||||
ringct::bulletproofs::{Bulletproofs, core::OriginalStruct},
|
||||
ringct::bulletproofs::{Bulletproofs, original::OriginalStruct},
|
||||
};
|
||||
|
||||
#[test]
|
||||
|
|
Loading…
Reference in a new issue