Reorganize bulletproofs

This commit is contained in:
Luke Parker 2022-07-31 23:12:45 -04:00
parent 1c4707136c
commit d07fe34a24
No known key found for this signature in database
GPG key ID: F9F1386DB1E119B6
5 changed files with 541 additions and 468 deletions

View file

@ -4,44 +4,40 @@
use lazy_static::lazy_static; use lazy_static::lazy_static;
use rand_core::{RngCore, CryptoRng}; use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint}; use curve25519_dalek::edwards::EdwardsPoint as DalekPoint;
use group::{ff::Field, Group}; use group::{ff::Field, Group};
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint}; use dalek_ff_group::{Scalar, EdwardsPoint};
use multiexp::{BatchVerifier, multiexp as multiexp_const}; use multiexp::multiexp as multiexp_const;
fn prove_multiexp(pairs: &[(Scalar, EdwardsPoint)]) -> EdwardsPoint {
multiexp_const(pairs) * *INV_EIGHT
}
use crate::{ use crate::{
H as DALEK_H, Commitment, hash, hash_to_scalar as dalek_hash, H as DALEK_H, Commitment, hash, hash_to_scalar as dalek_hash,
ringct::{hash_to_point::raw_hash_to_point, bulletproofs::scalar_vector::*}, ringct::hash_to_point::raw_hash_to_point, serialize::write_varint,
serialize::write_varint,
}; };
pub(crate) use crate::ringct::bulletproofs::scalar_vector::*;
// Bring things into ff/group // Bring things into ff/group
lazy_static! { lazy_static! {
static ref INV_EIGHT: Scalar = Scalar::from(8u8).invert().unwrap(); pub(crate) static ref INV_EIGHT: Scalar = Scalar::from(8u8).invert().unwrap();
static ref H: EdwardsPoint = EdwardsPoint(*DALEK_H); pub(crate) static ref H: EdwardsPoint = EdwardsPoint(*DALEK_H);
} }
fn hash_to_scalar(data: &[u8]) -> Scalar { pub(crate) fn hash_to_scalar(data: &[u8]) -> Scalar {
Scalar(dalek_hash(data)) Scalar(dalek_hash(data))
} }
// Components common between variants // Components common between variants
pub(crate) const MAX_M: usize = 16; pub(crate) const MAX_M: usize = 16;
const N: usize = 64; pub(crate) const N: usize = 64;
const MAX_MN: usize = MAX_M * N; pub(crate) const MAX_MN: usize = MAX_M * N;
struct Generators { pub(crate) struct Generators {
G: Vec<EdwardsPoint>, pub(crate) G: Vec<EdwardsPoint>,
H: Vec<EdwardsPoint>, pub(crate) H: Vec<EdwardsPoint>,
} }
fn generators_core(prefix: &'static [u8]) -> Generators { pub(crate) fn generators_core(prefix: &'static [u8]) -> Generators {
let mut res = Generators { G: Vec::with_capacity(MAX_MN), H: Vec::with_capacity(MAX_MN) }; let mut res = Generators { G: Vec::with_capacity(MAX_MN), H: Vec::with_capacity(MAX_MN) };
for i in 0 .. MAX_MN { for i in 0 .. MAX_MN {
let i = 2 * i; let i = 2 * i;
@ -58,13 +54,21 @@ fn generators_core(prefix: &'static [u8]) -> Generators {
res res
} }
pub(crate) fn prove_multiexp(pairs: &[(Scalar, EdwardsPoint)]) -> EdwardsPoint {
multiexp_const(pairs) * *INV_EIGHT
}
// TODO: Have this take in other, multiplied by G, and do a single multiexp // TODO: Have this take in other, multiplied by G, and do a single multiexp
fn vector_exponent(generators: &Generators, a: &ScalarVector, b: &ScalarVector) -> EdwardsPoint { pub(crate) fn vector_exponent(
generators: &Generators,
a: &ScalarVector,
b: &ScalarVector,
) -> EdwardsPoint {
debug_assert_eq!(a.len(), b.len()); debug_assert_eq!(a.len(), b.len());
(a * &generators.G[.. a.len()]) + (b * &generators.H[.. b.len()]) (a * &generators.G[.. a.len()]) + (b * &generators.H[.. b.len()])
} }
fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar { pub(crate) fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar {
let slice = let slice =
&[cache.to_bytes().as_ref(), mash.iter().cloned().flatten().collect::<Vec<_>>().as_ref()] &[cache.to_bytes().as_ref(), mash.iter().cloned().flatten().collect::<Vec<_>>().as_ref()]
.concat(); .concat();
@ -72,7 +76,7 @@ fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar {
*cache *cache
} }
fn MN(outputs: usize) -> (usize, usize, usize) { pub(crate) fn MN(outputs: usize) -> (usize, usize, usize) {
let logN = 6; let logN = 6;
debug_assert_eq!(N, 1 << logN); debug_assert_eq!(N, 1 << logN);
@ -88,7 +92,7 @@ fn MN(outputs: usize) -> (usize, usize, usize) {
(logM + logN, M, M * N) (logM + logN, M, M * N)
} }
fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) { pub(crate) fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) {
let (_, M, MN) = MN(commitments.len()); let (_, M, MN) = MN(commitments.len());
let sv = commitments.iter().map(|c| Scalar::from(c.amount)).collect::<Vec<_>>(); let sv = commitments.iter().map(|c| Scalar::from(c.amount)).collect::<Vec<_>>();
@ -108,14 +112,14 @@ fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) {
(aL, aR) (aL, aR)
} }
fn hash_commitments<C: IntoIterator<Item = DalekPoint>>( pub(crate) fn hash_commitments<C: IntoIterator<Item = DalekPoint>>(
commitments: C, commitments: C,
) -> (Scalar, Vec<EdwardsPoint>) { ) -> (Scalar, Vec<EdwardsPoint>) {
let V = commitments.into_iter().map(|c| EdwardsPoint(c) * *INV_EIGHT).collect::<Vec<_>>(); let V = commitments.into_iter().map(|c| EdwardsPoint(c) * *INV_EIGHT).collect::<Vec<_>>();
(hash_to_scalar(&V.iter().flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>()), V) (hash_to_scalar(&V.iter().flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>()), V)
} }
fn alpha_rho<R: RngCore + CryptoRng>( pub(crate) fn alpha_rho<R: RngCore + CryptoRng>(
rng: &mut R, rng: &mut R,
generators: &Generators, generators: &Generators,
aL: &ScalarVector, aL: &ScalarVector,
@ -125,7 +129,7 @@ fn alpha_rho<R: RngCore + CryptoRng>(
(ar, (vector_exponent(generators, aL, aR) + (EdwardsPoint::generator() * ar)) * *INV_EIGHT) (ar, (vector_exponent(generators, aL, aR) + (EdwardsPoint::generator() * ar)) * *INV_EIGHT)
} }
fn LR_statements( pub(crate) fn LR_statements(
a: &ScalarVector, a: &ScalarVector,
G_i: &[EdwardsPoint], G_i: &[EdwardsPoint],
b: &ScalarVector, b: &ScalarVector,
@ -145,439 +149,5 @@ fn LR_statements(
} }
lazy_static! { lazy_static! {
static ref TWO_N: ScalarVector = ScalarVector::powers(Scalar::from(2u8), N); pub(crate) static ref TWO_N: ScalarVector = ScalarVector::powers(Scalar::from(2u8), N);
}
// Bulletproofs-specific
lazy_static! {
static ref GENERATORS: Generators = generators_core(b"bulletproof");
static ref ONE_N: ScalarVector = ScalarVector(vec![Scalar::one(); N]);
static ref IP12: Scalar = inner_product(&ONE_N, &TWO_N);
}
// Bulletproofs+-specific
lazy_static! {
static ref GENERATORS_PLUS: Generators = generators_core(b"bulletproof_plus");
static ref TRANSCRIPT_PLUS: [u8; 32] =
EdwardsPoint(raw_hash_to_point(hash(b"bulletproof_plus_transcript"))).compress().to_bytes();
}
// TRANSCRIPT_PLUS isn't a Scalar, so we need this alternative for the first hash
fn hash_plus(mash: &[u8]) -> Scalar {
hash_to_scalar(&[&*TRANSCRIPT_PLUS as &[u8], mash].concat())
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct OriginalStruct {
pub(crate) A: DalekPoint,
pub(crate) S: DalekPoint,
pub(crate) T1: DalekPoint,
pub(crate) T2: DalekPoint,
pub(crate) taux: DalekScalar,
pub(crate) mu: DalekScalar,
pub(crate) L: Vec<DalekPoint>,
pub(crate) R: Vec<DalekPoint>,
pub(crate) a: DalekScalar,
pub(crate) b: DalekScalar,
pub(crate) t: DalekScalar,
}
impl OriginalStruct {
#[must_use]
fn verify_core<ID: Copy, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
// Verify commitments are valid
if commitments.is_empty() || (commitments.len() > MAX_M) {
return false;
}
// Verify L and R are properly sized
if self.L.len() != self.R.len() {
return false;
}
let (logMN, M, MN) = MN(commitments.len());
if self.L.len() != logMN {
return false;
}
// Rebuild all challenges
let (mut cache, commitments) = hash_commitments(commitments.iter().cloned());
let y = hash_cache(&mut cache, &[self.A.compress().to_bytes(), self.S.compress().to_bytes()]);
let z = hash_to_scalar(&y.to_bytes());
cache = z;
let x = hash_cache(
&mut cache,
&[z.to_bytes(), self.T1.compress().to_bytes(), self.T2.compress().to_bytes()],
);
let x_ip = hash_cache(
&mut cache,
&[x.to_bytes(), self.taux.to_bytes(), self.mu.to_bytes(), self.t.to_bytes()],
);
let mut w = Vec::with_capacity(logMN);
let mut winv = Vec::with_capacity(logMN);
for (L, R) in self.L.iter().zip(&self.R) {
w.push(hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()]));
winv.push(cache.invert().unwrap());
}
// Convert the proof from * INV_EIGHT to its actual form
let normalize = |point: &DalekPoint| EdwardsPoint(point.mul_by_cofactor());
let L = self.L.iter().map(normalize).collect::<Vec<_>>();
let R = self.R.iter().map(normalize).collect::<Vec<_>>();
let T1 = normalize(&self.T1);
let T2 = normalize(&self.T2);
let A = normalize(&self.A);
let S = normalize(&self.S);
let commitments = commitments.iter().map(|c| c.mul_by_cofactor()).collect::<Vec<_>>();
// Verify it
let mut proof = Vec::with_capacity(4 + commitments.len());
let zpow = ScalarVector::powers(z, M + 3);
let ip1y = ScalarVector::powers(y, M * N).sum();
let mut k = -(zpow[2] * ip1y);
for j in 1 ..= M {
k -= zpow[j + 2] * *IP12;
}
let y1 = Scalar(self.t) - ((z * ip1y) + k);
proof.push((-y1, *H));
proof.push((-Scalar(self.taux), G));
for (j, commitment) in commitments.iter().enumerate() {
proof.push((zpow[j + 2], *commitment));
}
proof.push((x, T1));
proof.push((x * x, T2));
verifier.queue(&mut *rng, id, proof);
proof = Vec::with_capacity(4 + (2 * (MN + logMN)));
let z3 = (Scalar(self.t) - (Scalar(self.a) * Scalar(self.b))) * x_ip;
proof.push((z3, *H));
proof.push((-Scalar(self.mu), G));
proof.push((Scalar::one(), A));
proof.push((x, S));
{
let ypow = ScalarVector::powers(y, MN);
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut w_cache = vec![Scalar::zero(); MN];
w_cache[0] = winv[0];
w_cache[1] = w[0];
for j in 1 .. logMN {
let mut slots = (1 << (j + 1)) - 1;
while slots > 0 {
w_cache[slots] = w_cache[slots / 2] * w[j];
w_cache[slots - 1] = w_cache[slots / 2] * winv[j];
slots = slots.saturating_sub(2);
}
}
for w in &w_cache {
debug_assert!(!bool::from(w.is_zero()));
}
for i in 0 .. MN {
let g = (Scalar(self.a) * w_cache[i]) + z;
proof.push((-g, GENERATORS.G[i]));
let mut h = Scalar(self.b) * yinvpow[i] * w_cache[(!i) & (MN - 1)];
h -= ((zpow[(i / N) + 2] * TWO_N[i % N]) + (z * ypow[i])) * yinvpow[i];
proof.push((-h, GENERATORS.H[i]));
}
}
for i in 0 .. logMN {
proof.push((w[i] * w[i], L[i]));
proof.push((winv[i] * winv[i], R[i]));
}
verifier.queue(rng, id, proof);
true
}
#[must_use]
pub(crate) fn verify<R: RngCore + CryptoRng>(
&self,
rng: &mut R,
commitments: &[DalekPoint],
) -> bool {
let mut verifier = BatchVerifier::new(4 + commitments.len() + 4 + (2 * (MAX_MN + 10)));
if self.verify_core(rng, &mut verifier, (), commitments) {
verifier.verify_vartime()
} else {
false
}
}
#[must_use]
pub(crate) fn batch_verify<ID: Copy, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
self.verify_core(rng, verifier, id, commitments)
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct PlusStruct {
pub(crate) A: DalekPoint,
pub(crate) A1: DalekPoint,
pub(crate) B: DalekPoint,
pub(crate) r1: DalekScalar,
pub(crate) s1: DalekScalar,
pub(crate) d1: DalekScalar,
pub(crate) L: Vec<DalekPoint>,
pub(crate) R: Vec<DalekPoint>,
}
#[allow(clippy::large_enum_variant)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Bulletproofs {
Original(OriginalStruct),
Plus(PlusStruct),
}
pub(crate) fn prove<R: RngCore + CryptoRng>(
rng: &mut R,
commitments: &[Commitment],
) -> Bulletproofs {
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate));
let (alpha, A) = alpha_rho(&mut *rng, &GENERATORS, &aL, &aR);
let (sL, sR) =
ScalarVector((0 .. (MN * 2)).map(|_| Scalar::random(&mut *rng)).collect::<Vec<_>>()).split();
let (rho, S) = alpha_rho(&mut *rng, &GENERATORS, &sL, &sR);
let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]);
let mut cache = hash_to_scalar(&y.to_bytes());
let z = cache;
let l0 = &aL - z;
let l1 = sL;
let mut zero_twos = Vec::with_capacity(MN);
let zpow = ScalarVector::powers(z, M + 2);
for j in 0 .. M {
for i in 0 .. N {
zero_twos.push(zpow[j + 2] * TWO_N[i]);
}
}
let yMN = ScalarVector::powers(y, MN);
let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos);
let r1 = yMN * sR;
let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0);
let t2 = inner_product(&l1, &r1);
let tau1 = Scalar::random(&mut *rng);
let tau2 = Scalar::random(rng);
let T1 = prove_multiexp(&[(t1, *H), (tau1, EdwardsPoint::generator())]);
let T2 = prove_multiexp(&[(t2, *H), (tau2, EdwardsPoint::generator())]);
let x =
hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]);
let mut taux = (tau2 * (x * x)) + (tau1 * x);
for (i, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
taux += zpow[i + 2] * gamma;
}
let mu = (x * rho) + alpha;
let l = &l0 + &(l1 * x);
let r = &r0 + &(r1 * x);
let t = inner_product(&l, &r);
let x_ip = hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]);
let mut a = l;
let mut b = r;
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut G_proof = GENERATORS.G[.. a.len()].to_vec();
let mut H_proof = GENERATORS.H[.. a.len()].to_vec();
H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow);
let U = *H * x_ip;
let mut L = Vec::with_capacity(logMN);
let mut R = Vec::with_capacity(logMN);
while a.len() != 1 {
let (aL, aR) = a.split();
let (bL, bR) = b.split();
let cL = inner_product(&aL, &bR);
let cR = inner_product(&aR, &bL);
let (G_L, G_R) = G_proof.split_at(aL.len());
let (H_L, H_R) = H_proof.split_at(aL.len());
let L_i = prove_multiexp(&LR_statements(&aL, G_R, &bR, H_L, cL, U));
let R_i = prove_multiexp(&LR_statements(&aR, G_L, &bL, H_R, cR, U));
L.push(L_i);
R.push(R_i);
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
let winv = w.invert().unwrap();
a = (aL * w) + (aR * winv);
b = (bL * winv) + (bR * w);
if a.len() != 1 {
G_proof = hadamard_fold(G_L, G_R, winv, w);
H_proof = hadamard_fold(H_L, H_R, w, winv);
}
}
Bulletproofs::Original(OriginalStruct {
A: *A,
S: *S,
T1: *T1,
T2: *T2,
taux: *taux,
mu: *mu,
L: L.drain(..).map(|L| *L).collect(),
R: R.drain(..).map(|R| *R).collect(),
a: *a[0],
b: *b[0],
t: *t,
})
}
pub(crate) fn prove_plus<R: RngCore + CryptoRng>(
rng: &mut R,
commitments: &[Commitment],
) -> Bulletproofs {
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate));
cache = hash_plus(&cache.to_bytes());
let (mut alpha1, A) = alpha_rho(&mut *rng, &GENERATORS_PLUS, &aL, &aR);
let y = hash_cache(&mut cache, &[A.compress().to_bytes()]);
let mut cache = hash_to_scalar(&y.to_bytes());
let z = cache;
let zpow = ScalarVector::even_powers(z, 2 * M);
// d[j*N+i] = z**(2*(j+1)) * 2**i
let mut d = vec![Scalar::zero(); MN];
for j in 0 .. M {
for i in 0 .. N {
d[(j * N) + i] = zpow[j] * TWO_N[i];
}
}
let aL1 = aL - z;
let ypow = ScalarVector::powers(y, MN + 2);
let mut y_for_d = ScalarVector(ypow.0[1 ..= MN].to_vec());
y_for_d.0.reverse();
let aR1 = (aR + z) + (y_for_d * ScalarVector(d));
for (j, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
alpha1 += zpow[j] * ypow[MN + 1] * gamma;
}
let mut a = aL1;
let mut b = aR1;
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut G_proof = GENERATORS_PLUS.G[.. a.len()].to_vec();
let mut H_proof = GENERATORS_PLUS.H[.. a.len()].to_vec();
let mut L = Vec::with_capacity(logMN);
let mut R = Vec::with_capacity(logMN);
while a.len() != 1 {
let (aL, aR) = a.split();
let (bL, bR) = b.split();
let cL = weighted_inner_product(&aL, &bR, y);
let cR = weighted_inner_product(&(&aR * ypow[aR.len()]), &bL, y);
let (dL, dR) = (Scalar::random(&mut *rng), Scalar::random(&mut *rng));
let (G_L, G_R) = G_proof.split_at(aL.len());
let (H_L, H_R) = H_proof.split_at(aL.len());
let mut L_i = LR_statements(&(&aL * yinvpow[aL.len()]), G_R, &bR, H_L, cL, *H);
L_i.push((dL, G));
let L_i = prove_multiexp(&L_i);
L.push(L_i);
let mut R_i = LR_statements(&(&aR * ypow[aR.len()]), G_L, &bL, H_R, cR, *H);
R_i.push((dR, G));
let R_i = prove_multiexp(&R_i);
R.push(R_i);
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
let winv = w.invert().unwrap();
G_proof = hadamard_fold(G_L, G_R, winv, w * yinvpow[aL.len()]);
H_proof = hadamard_fold(H_L, H_R, w, winv);
a = (&aL * w) + (aR * (winv * ypow[aL.len()]));
b = (bL * winv) + (bR * w);
alpha1 += (dL * (w * w)) + (dR * (winv * winv));
}
let r = Scalar::random(&mut *rng);
let s = Scalar::random(&mut *rng);
let d = Scalar::random(&mut *rng);
let eta = Scalar::random(rng);
let A1 = prove_multiexp(&[
(r, G_proof[0]),
(s, H_proof[0]),
(d, G),
((r * y * b[0]) + (s * y * a[0]), *H),
]);
let B = prove_multiexp(&[(r * y * s, *H), (eta, G)]);
let e = hash_cache(&mut cache, &[A1.compress().to_bytes(), B.compress().to_bytes()]);
let r1 = (a[0] * e) + r;
let s1 = (b[0] * e) + s;
let d1 = ((d * e) + eta) + (alpha1 * (e * e));
Bulletproofs::Plus(PlusStruct {
A: *A,
A1: *A1,
B: *B,
r1: *r1,
s1: *s1,
d1: *d1,
L: L.drain(..).map(|L| *L).collect(),
R: R.drain(..).map(|R| *R).collect(),
})
} }

View file

@ -8,12 +8,22 @@ use multiexp::BatchVerifier;
use crate::{Commitment, wallet::TransactionError, serialize::*}; use crate::{Commitment, wallet::TransactionError, serialize::*};
pub(crate) mod scalar_vector; pub(crate) mod scalar_vector;
pub(crate) mod core;
pub mod core; pub(crate) mod original;
pub(crate) use self::core::Bulletproofs; pub(crate) mod plus;
use self::core::{MAX_M, OriginalStruct, PlusStruct, prove, prove_plus};
pub(crate) const MAX_OUTPUTS: usize = MAX_M; pub(crate) use self::original::OriginalStruct;
pub(crate) use self::plus::PlusStruct;
pub(crate) const MAX_OUTPUTS: usize = self::core::MAX_M;
#[allow(clippy::large_enum_variant)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Bulletproofs {
Original(OriginalStruct),
Plus(PlusStruct),
}
impl Bulletproofs { impl Bulletproofs {
// TODO // TODO
@ -39,14 +49,18 @@ impl Bulletproofs {
if outputs.len() > MAX_OUTPUTS { if outputs.len() > MAX_OUTPUTS {
return Err(TransactionError::TooManyOutputs)?; return Err(TransactionError::TooManyOutputs)?;
} }
Ok(if !plus { prove(rng, outputs) } else { prove_plus(rng, outputs) }) Ok(if !plus {
Bulletproofs::Original(OriginalStruct::prove(rng, outputs))
} else {
Bulletproofs::Plus(PlusStruct::prove(rng, outputs))
})
} }
#[must_use] #[must_use]
pub fn verify<R: RngCore + CryptoRng>(&self, rng: &mut R, commitments: &[EdwardsPoint]) -> bool { pub fn verify<R: RngCore + CryptoRng>(&self, rng: &mut R, commitments: &[EdwardsPoint]) -> bool {
match self { match self {
Bulletproofs::Original(bp) => bp.verify(rng, commitments), Bulletproofs::Original(bp) => bp.verify(rng, commitments),
Bulletproofs::Plus(_) => unimplemented!("Bulletproofs+ verification isn't implemented"), Bulletproofs::Plus(bp) => bp.verify(rng, commitments),
} }
} }
@ -60,7 +74,7 @@ impl Bulletproofs {
) -> bool { ) -> bool {
match self { match self {
Bulletproofs::Original(bp) => bp.batch_verify(rng, verifier, id, commitments), Bulletproofs::Original(bp) => bp.batch_verify(rng, verifier, id, commitments),
Bulletproofs::Plus(_) => unimplemented!("Bulletproofs+ verification isn't implemented"), Bulletproofs::Plus(bp) => bp.batch_verify(rng, verifier, id, commitments),
} }
} }

View file

@ -0,0 +1,303 @@
use lazy_static::lazy_static;
use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint};
use group::{ff::Field, Group};
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
use multiexp::BatchVerifier;
use crate::{Commitment, ringct::bulletproofs::core::*};
lazy_static! {
static ref GENERATORS: Generators = generators_core(b"bulletproof");
static ref ONE_N: ScalarVector = ScalarVector(vec![Scalar::one(); N]);
static ref IP12: Scalar = inner_product(&ONE_N, &TWO_N);
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct OriginalStruct {
pub(crate) A: DalekPoint,
pub(crate) S: DalekPoint,
pub(crate) T1: DalekPoint,
pub(crate) T2: DalekPoint,
pub(crate) taux: DalekScalar,
pub(crate) mu: DalekScalar,
pub(crate) L: Vec<DalekPoint>,
pub(crate) R: Vec<DalekPoint>,
pub(crate) a: DalekScalar,
pub(crate) b: DalekScalar,
pub(crate) t: DalekScalar,
}
impl OriginalStruct {
pub(crate) fn prove<R: RngCore + CryptoRng>(
rng: &mut R,
commitments: &[Commitment],
) -> OriginalStruct {
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate));
let (alpha, A) = alpha_rho(&mut *rng, &GENERATORS, &aL, &aR);
let (sL, sR) =
ScalarVector((0 .. (MN * 2)).map(|_| Scalar::random(&mut *rng)).collect::<Vec<_>>()).split();
let (rho, S) = alpha_rho(&mut *rng, &GENERATORS, &sL, &sR);
let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]);
let mut cache = hash_to_scalar(&y.to_bytes());
let z = cache;
let l0 = &aL - z;
let l1 = sL;
let mut zero_twos = Vec::with_capacity(MN);
let zpow = ScalarVector::powers(z, M + 2);
for j in 0 .. M {
for i in 0 .. N {
zero_twos.push(zpow[j + 2] * TWO_N[i]);
}
}
let yMN = ScalarVector::powers(y, MN);
let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos);
let r1 = yMN * sR;
let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0);
let t2 = inner_product(&l1, &r1);
let tau1 = Scalar::random(&mut *rng);
let tau2 = Scalar::random(rng);
let T1 = prove_multiexp(&[(t1, *H), (tau1, EdwardsPoint::generator())]);
let T2 = prove_multiexp(&[(t2, *H), (tau2, EdwardsPoint::generator())]);
let x =
hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]);
let mut taux = (tau2 * (x * x)) + (tau1 * x);
for (i, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
taux += zpow[i + 2] * gamma;
}
let mu = (x * rho) + alpha;
let l = &l0 + &(l1 * x);
let r = &r0 + &(r1 * x);
let t = inner_product(&l, &r);
let x_ip =
hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]);
let mut a = l;
let mut b = r;
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut G_proof = GENERATORS.G[.. a.len()].to_vec();
let mut H_proof = GENERATORS.H[.. a.len()].to_vec();
H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow);
let U = *H * x_ip;
let mut L = Vec::with_capacity(logMN);
let mut R = Vec::with_capacity(logMN);
while a.len() != 1 {
let (aL, aR) = a.split();
let (bL, bR) = b.split();
let cL = inner_product(&aL, &bR);
let cR = inner_product(&aR, &bL);
let (G_L, G_R) = G_proof.split_at(aL.len());
let (H_L, H_R) = H_proof.split_at(aL.len());
let L_i = prove_multiexp(&LR_statements(&aL, G_R, &bR, H_L, cL, U));
let R_i = prove_multiexp(&LR_statements(&aR, G_L, &bL, H_R, cR, U));
L.push(L_i);
R.push(R_i);
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
let winv = w.invert().unwrap();
a = (aL * w) + (aR * winv);
b = (bL * winv) + (bR * w);
if a.len() != 1 {
G_proof = hadamard_fold(G_L, G_R, winv, w);
H_proof = hadamard_fold(H_L, H_R, w, winv);
}
}
OriginalStruct {
A: *A,
S: *S,
T1: *T1,
T2: *T2,
taux: *taux,
mu: *mu,
L: L.drain(..).map(|L| *L).collect(),
R: R.drain(..).map(|R| *R).collect(),
a: *a[0],
b: *b[0],
t: *t,
}
}
#[must_use]
fn verify_core<ID: Copy, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
// Verify commitments are valid
if commitments.is_empty() || (commitments.len() > MAX_M) {
return false;
}
// Verify L and R are properly sized
if self.L.len() != self.R.len() {
return false;
}
let (logMN, M, MN) = MN(commitments.len());
if self.L.len() != logMN {
return false;
}
// Rebuild all challenges
let (mut cache, commitments) = hash_commitments(commitments.iter().cloned());
let y = hash_cache(&mut cache, &[self.A.compress().to_bytes(), self.S.compress().to_bytes()]);
let z = hash_to_scalar(&y.to_bytes());
cache = z;
let x = hash_cache(
&mut cache,
&[z.to_bytes(), self.T1.compress().to_bytes(), self.T2.compress().to_bytes()],
);
let x_ip = hash_cache(
&mut cache,
&[x.to_bytes(), self.taux.to_bytes(), self.mu.to_bytes(), self.t.to_bytes()],
);
let mut w = Vec::with_capacity(logMN);
let mut winv = Vec::with_capacity(logMN);
for (L, R) in self.L.iter().zip(&self.R) {
w.push(hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()]));
winv.push(cache.invert().unwrap());
}
// Convert the proof from * INV_EIGHT to its actual form
let normalize = |point: &DalekPoint| EdwardsPoint(point.mul_by_cofactor());
let L = self.L.iter().map(normalize).collect::<Vec<_>>();
let R = self.R.iter().map(normalize).collect::<Vec<_>>();
let T1 = normalize(&self.T1);
let T2 = normalize(&self.T2);
let A = normalize(&self.A);
let S = normalize(&self.S);
let commitments = commitments.iter().map(|c| c.mul_by_cofactor()).collect::<Vec<_>>();
// Verify it
let mut proof = Vec::with_capacity(4 + commitments.len());
let zpow = ScalarVector::powers(z, M + 3);
let ip1y = ScalarVector::powers(y, M * N).sum();
let mut k = -(zpow[2] * ip1y);
for j in 1 ..= M {
k -= zpow[j + 2] * *IP12;
}
let y1 = Scalar(self.t) - ((z * ip1y) + k);
proof.push((-y1, *H));
proof.push((-Scalar(self.taux), G));
for (j, commitment) in commitments.iter().enumerate() {
proof.push((zpow[j + 2], *commitment));
}
proof.push((x, T1));
proof.push((x * x, T2));
verifier.queue(&mut *rng, id, proof);
proof = Vec::with_capacity(4 + (2 * (MN + logMN)));
let z3 = (Scalar(self.t) - (Scalar(self.a) * Scalar(self.b))) * x_ip;
proof.push((z3, *H));
proof.push((-Scalar(self.mu), G));
proof.push((Scalar::one(), A));
proof.push((x, S));
{
let ypow = ScalarVector::powers(y, MN);
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut w_cache = vec![Scalar::zero(); MN];
w_cache[0] = winv[0];
w_cache[1] = w[0];
for j in 1 .. logMN {
let mut slots = (1 << (j + 1)) - 1;
while slots > 0 {
w_cache[slots] = w_cache[slots / 2] * w[j];
w_cache[slots - 1] = w_cache[slots / 2] * winv[j];
slots = slots.saturating_sub(2);
}
}
for w in &w_cache {
debug_assert!(!bool::from(w.is_zero()));
}
for i in 0 .. MN {
let g = (Scalar(self.a) * w_cache[i]) + z;
proof.push((-g, GENERATORS.G[i]));
let mut h = Scalar(self.b) * yinvpow[i] * w_cache[(!i) & (MN - 1)];
h -= ((zpow[(i / N) + 2] * TWO_N[i % N]) + (z * ypow[i])) * yinvpow[i];
proof.push((-h, GENERATORS.H[i]));
}
}
for i in 0 .. logMN {
proof.push((w[i] * w[i], L[i]));
proof.push((winv[i] * winv[i], R[i]));
}
verifier.queue(rng, id, proof);
true
}
#[must_use]
pub(crate) fn verify<R: RngCore + CryptoRng>(
&self,
rng: &mut R,
commitments: &[DalekPoint],
) -> bool {
let mut verifier = BatchVerifier::new(4 + commitments.len() + 4 + (2 * (MAX_MN + 10)));
if self.verify_core(rng, &mut verifier, (), commitments) {
verifier.verify_vartime()
} else {
false
}
}
#[must_use]
pub(crate) fn batch_verify<ID: Copy, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
self.verify_core(rng, verifier, id, commitments)
}
}

View file

@ -0,0 +1,186 @@
use lazy_static::lazy_static;
use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint};
use group::ff::Field;
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
use multiexp::BatchVerifier;
use crate::{
Commitment, hash,
ringct::{hash_to_point::raw_hash_to_point, bulletproofs::core::*},
};
lazy_static! {
static ref GENERATORS: Generators = generators_core(b"bulletproof_plus");
static ref TRANSCRIPT: [u8; 32] =
EdwardsPoint(raw_hash_to_point(hash(b"bulletproof_plus_transcript"))).compress().to_bytes();
}
// TRANSCRIPT isn't a Scalar, so we need this alternative for the first hash
fn hash_plus(mash: &[u8]) -> Scalar {
hash_to_scalar(&[&*TRANSCRIPT as &[u8], mash].concat())
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct PlusStruct {
pub(crate) A: DalekPoint,
pub(crate) A1: DalekPoint,
pub(crate) B: DalekPoint,
pub(crate) r1: DalekScalar,
pub(crate) s1: DalekScalar,
pub(crate) d1: DalekScalar,
pub(crate) L: Vec<DalekPoint>,
pub(crate) R: Vec<DalekPoint>,
}
impl PlusStruct {
pub(crate) fn prove<R: RngCore + CryptoRng>(
rng: &mut R,
commitments: &[Commitment],
) -> PlusStruct {
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate));
cache = hash_plus(&cache.to_bytes());
let (mut alpha1, A) = alpha_rho(&mut *rng, &GENERATORS, &aL, &aR);
let y = hash_cache(&mut cache, &[A.compress().to_bytes()]);
let mut cache = hash_to_scalar(&y.to_bytes());
let z = cache;
let zpow = ScalarVector::even_powers(z, 2 * M);
// d[j*N+i] = z**(2*(j+1)) * 2**i
let mut d = vec![Scalar::zero(); MN];
for j in 0 .. M {
for i in 0 .. N {
d[(j * N) + i] = zpow[j] * TWO_N[i];
}
}
let aL1 = aL - z;
let ypow = ScalarVector::powers(y, MN + 2);
let mut y_for_d = ScalarVector(ypow.0[1 ..= MN].to_vec());
y_for_d.0.reverse();
let aR1 = (aR + z) + (y_for_d * ScalarVector(d));
for (j, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
alpha1 += zpow[j] * ypow[MN + 1] * gamma;
}
let mut a = aL1;
let mut b = aR1;
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut G_proof = GENERATORS.G[.. a.len()].to_vec();
let mut H_proof = GENERATORS.H[.. a.len()].to_vec();
let mut L = Vec::with_capacity(logMN);
let mut R = Vec::with_capacity(logMN);
while a.len() != 1 {
let (aL, aR) = a.split();
let (bL, bR) = b.split();
let cL = weighted_inner_product(&aL, &bR, y);
let cR = weighted_inner_product(&(&aR * ypow[aR.len()]), &bL, y);
let (dL, dR) = (Scalar::random(&mut *rng), Scalar::random(&mut *rng));
let (G_L, G_R) = G_proof.split_at(aL.len());
let (H_L, H_R) = H_proof.split_at(aL.len());
let mut L_i = LR_statements(&(&aL * yinvpow[aL.len()]), G_R, &bR, H_L, cL, *H);
L_i.push((dL, G));
let L_i = prove_multiexp(&L_i);
L.push(L_i);
let mut R_i = LR_statements(&(&aR * ypow[aR.len()]), G_L, &bL, H_R, cR, *H);
R_i.push((dR, G));
let R_i = prove_multiexp(&R_i);
R.push(R_i);
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
let winv = w.invert().unwrap();
G_proof = hadamard_fold(G_L, G_R, winv, w * yinvpow[aL.len()]);
H_proof = hadamard_fold(H_L, H_R, w, winv);
a = (&aL * w) + (aR * (winv * ypow[aL.len()]));
b = (bL * winv) + (bR * w);
alpha1 += (dL * (w * w)) + (dR * (winv * winv));
}
let r = Scalar::random(&mut *rng);
let s = Scalar::random(&mut *rng);
let d = Scalar::random(&mut *rng);
let eta = Scalar::random(rng);
let A1 = prove_multiexp(&[
(r, G_proof[0]),
(s, H_proof[0]),
(d, G),
((r * y * b[0]) + (s * y * a[0]), *H),
]);
let B = prove_multiexp(&[(r * y * s, *H), (eta, G)]);
let e = hash_cache(&mut cache, &[A1.compress().to_bytes(), B.compress().to_bytes()]);
let r1 = (a[0] * e) + r;
let s1 = (b[0] * e) + s;
let d1 = ((d * e) + eta) + (alpha1 * (e * e));
PlusStruct {
A: *A,
A1: *A1,
B: *B,
r1: *r1,
s1: *s1,
d1: *d1,
L: L.drain(..).map(|L| *L).collect(),
R: R.drain(..).map(|R| *R).collect(),
}
}
#[must_use]
fn verify_core<ID: Copy, R: RngCore + CryptoRng>(
&self,
_rng: &mut R,
_verifier: &mut BatchVerifier<ID, EdwardsPoint>,
_id: ID,
_commitments: &[DalekPoint],
) -> bool {
unimplemented!("Bulletproofs+ verification isn't implemented")
}
#[must_use]
pub(crate) fn verify<R: RngCore + CryptoRng>(
&self,
rng: &mut R,
commitments: &[DalekPoint],
) -> bool {
let mut verifier = BatchVerifier::new(4 + commitments.len() + 4 + (2 * (MAX_MN + 10)));
if self.verify_core(rng, &mut verifier, (), commitments) {
verifier.verify_vartime()
} else {
false
}
}
#[must_use]
pub(crate) fn batch_verify<ID: Copy, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
self.verify_core(rng, verifier, id, commitments)
}
}

View file

@ -6,7 +6,7 @@ use multiexp::BatchVerifier;
use crate::{ use crate::{
Commitment, random_scalar, Commitment, random_scalar,
ringct::bulletproofs::{Bulletproofs, core::OriginalStruct}, ringct::bulletproofs::{Bulletproofs, original::OriginalStruct},
}; };
#[test] #[test]