mirror of
https://github.com/serai-dex/serai.git
synced 2025-01-12 13:55:28 +00:00
Expand tests for ethereum-schnorr-contract
This commit is contained in:
parent
0b61a75afc
commit
ce1689b325
9 changed files with 205 additions and 51 deletions
|
@ -1,7 +1,13 @@
|
|||
// SPDX-License-Identifier: AGPL-3.0-only
|
||||
pragma solidity ^0.8.26;
|
||||
|
||||
// See https://github.com/noot/schnorr-verify for implementation details
|
||||
/// @title A library for verifying Schnorr signatures
|
||||
/// @author Luke Parker <lukeparker5132@gmail.com>
|
||||
/// @author Elizabeth Binks <elizabethjbinks@gmail.com>
|
||||
/// @notice Verifies a Schnorr signature for a specified public key
|
||||
/// @dev This contract is not complete. Only certain public keys are compatible
|
||||
/// @dev See https://github.com/serai-dex/serai/blob/next/networks/ethereum/schnorr/src/tests/premise.rs for implementation details
|
||||
// TODO: Pin to a specific branch/commit once `next` is merged into `develop`
|
||||
library Schnorr {
|
||||
// secp256k1 group order
|
||||
uint256 private constant Q = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141;
|
||||
|
@ -11,31 +17,39 @@ library Schnorr {
|
|||
// 2) An x-coordinate < Q
|
||||
uint8 private constant KEY_PARITY = 27;
|
||||
|
||||
// px := public key x-coordinate, where the public key has an even y-coordinate
|
||||
// message := the message signed
|
||||
// c := Schnorr signature challenge
|
||||
// s := Schnorr signature solution
|
||||
function verify(bytes32 px, bytes32 message, bytes32 c, bytes32 s) internal pure returns (bool) {
|
||||
/// @notice Verifies a Schnorr signature for the specified public key
|
||||
/// @dev The y-coordinate of the public key is assumed to be even
|
||||
/// @dev The x-coordinate of the public key is assumed to be less than the order of secp256k1
|
||||
/// @dev The challenge is calculated as `keccak256(abi.encodePacked(address(R), public_key, message))` where `R` is the commitment to the Schnorr signature's nonce
|
||||
/// @param public_key The x-coordinate of the public key
|
||||
/// @param message The (hash of the) message signed
|
||||
/// @param c The challenge for the Schnorr signature
|
||||
/// @param s The response to the challenge for the Schnorr signature
|
||||
/// @return If the signature is valid
|
||||
function verify(bytes32 public_key, bytes32 message, bytes32 c, bytes32 s)
|
||||
internal
|
||||
pure
|
||||
returns (bool)
|
||||
{
|
||||
// ecrecover = (m, v, r, s) -> key
|
||||
// We instead pass the following to obtain the nonce (not the key)
|
||||
// Then we hash it and verify it matches the challenge
|
||||
bytes32 sa = bytes32(Q - mulmod(uint256(s), uint256(px), Q));
|
||||
bytes32 ca = bytes32(Q - mulmod(uint256(c), uint256(px), Q));
|
||||
// We instead pass the following to recover the Schnorr signature's nonce (not a public key)
|
||||
bytes32 sa = bytes32(Q - mulmod(uint256(s), uint256(public_key), Q));
|
||||
bytes32 ca = bytes32(Q - mulmod(uint256(c), uint256(public_key), Q));
|
||||
|
||||
/*
|
||||
The ecrecover precompile checks `r` and `s` (`px` and `ca`) are non-zero,
|
||||
banning the two keys with zero for their x-coordinate and zero challenge.
|
||||
Each has negligible probability of occuring (assuming zero x-coordinates
|
||||
are even on-curve in the first place).
|
||||
The ecrecover precompile checks `r` and `s` (`public_key` and `ca`) are non-zero, banning the
|
||||
two keys with zero for their x-coordinate and zero challenges. Each already only had a
|
||||
negligible probability of occuring (assuming zero x-coordinates are even on-curve in the first
|
||||
place).
|
||||
|
||||
`sa` is not checked to be non-zero yet it does not need to be. The inverse
|
||||
of it is never taken.
|
||||
`sa` is not checked to be non-zero yet it does not need to be. The inverse of it is never
|
||||
taken.
|
||||
*/
|
||||
address R = ecrecover(sa, KEY_PARITY, px, ca);
|
||||
address R = ecrecover(sa, KEY_PARITY, public_key, ca);
|
||||
// The ecrecover failed
|
||||
if (R == address(0)) return false;
|
||||
|
||||
// Check the signature is correct by rebuilding the challenge
|
||||
return c == keccak256(abi.encodePacked(R, px, message));
|
||||
return c == keccak256(abi.encodePacked(R, public_key, message));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -3,7 +3,19 @@ pragma solidity ^0.8.26;
|
|||
|
||||
import "../Schnorr.sol";
|
||||
|
||||
/// @title A thin wrapper around the library for verifying Schnorr signatures to test it with
|
||||
/// @author Luke Parker <lukeparker5132@gmail.com>
|
||||
/// @author Elizabeth Binks <elizabethjbinks@gmail.com>
|
||||
contract TestSchnorr {
|
||||
/// @notice Verifies a Schnorr signature for the specified public key
|
||||
/// @dev The y-coordinate of the public key is assumed to be even
|
||||
/// @dev The x-coordinate of the public key is assumed to be less than the order of secp256k1
|
||||
/// @dev The challenge is calculated as `keccak256(abi.encodePacked(address(R), public_key, message))` where `R` is the commitment to the Schnorr signature's nonce
|
||||
/// @param public_key The x-coordinate of the public key
|
||||
/// @param message The (hash of the) message signed
|
||||
/// @param c The challenge for the Schnorr signature
|
||||
/// @param s The response to the challenge for the Schnorr signature
|
||||
/// @return If the signature is valid
|
||||
function verify(bytes32 public_key, bytes calldata message, bytes32 c, bytes32 s)
|
||||
external
|
||||
pure
|
||||
|
|
|
@ -31,8 +31,7 @@ impl PublicKey {
|
|||
|
||||
let x_coordinate = affine.x();
|
||||
// Return None if the x-coordinate isn't mutual to both fields
|
||||
// While reductions shouldn't be an issue, it's one less headache/concern to have
|
||||
// The trivial amount of public keys this makes non-representable aren't a concern
|
||||
// The trivial amount of public keys this makes non-representable aren't considered a concern
|
||||
if <Scalar as Reduce<KU256>>::reduce_bytes(&x_coordinate).to_repr() != x_coordinate {
|
||||
None?;
|
||||
}
|
||||
|
|
|
@ -20,11 +20,17 @@ pub struct Signature {
|
|||
impl Signature {
|
||||
/// Construct a new `Signature`.
|
||||
#[must_use]
|
||||
pub fn new(c: Scalar, s: Scalar) -> Signature {
|
||||
Signature { c, s }
|
||||
pub fn new(c: Scalar, s: Scalar) -> Option<Signature> {
|
||||
if bool::from(c.is_zero()) {
|
||||
None?;
|
||||
}
|
||||
Some(Signature { c, s })
|
||||
}
|
||||
|
||||
/// The challenge for a signature.
|
||||
///
|
||||
/// With negligible probability, this MAY return 0 which will create an invalid/unverifiable
|
||||
/// signature.
|
||||
#[must_use]
|
||||
pub fn challenge(R: ProjectivePoint, key: &PublicKey, message: &[u8]) -> Scalar {
|
||||
// H(R || A || m)
|
||||
|
|
|
@ -17,6 +17,9 @@ use alloy_node_bindings::{Anvil, AnvilInstance};
|
|||
|
||||
use crate::{PublicKey, Signature};
|
||||
|
||||
mod public_key;
|
||||
pub(crate) use public_key::test_key;
|
||||
mod signature;
|
||||
mod premise;
|
||||
|
||||
#[expect(warnings)]
|
||||
|
@ -88,12 +91,7 @@ async fn test_verify() {
|
|||
let (_anvil, provider, address) = setup_test().await;
|
||||
|
||||
for _ in 0 .. 100 {
|
||||
let (key, public_key) = loop {
|
||||
let key = Scalar::random(&mut OsRng);
|
||||
if let Some(public_key) = PublicKey::new(ProjectivePoint::GENERATOR * key) {
|
||||
break (key, public_key);
|
||||
}
|
||||
};
|
||||
let (key, public_key) = test_key();
|
||||
|
||||
let nonce = Scalar::random(&mut OsRng);
|
||||
let mut message = vec![0; 1 + usize::try_from(OsRng.next_u32() % 256).unwrap()];
|
||||
|
@ -102,11 +100,37 @@ async fn test_verify() {
|
|||
let c = Signature::challenge(ProjectivePoint::GENERATOR * nonce, &public_key, &message);
|
||||
let s = nonce + (c * key);
|
||||
|
||||
let sig = Signature::new(c, s);
|
||||
let sig = Signature::new(c, s).unwrap();
|
||||
assert!(sig.verify(&public_key, &message));
|
||||
assert!(call_verify(&provider, address, &public_key, &message, &sig).await);
|
||||
|
||||
// Test setting `s = 0` doesn't pass verification
|
||||
{
|
||||
let zero_s = Signature::new(c, Scalar::ZERO).unwrap();
|
||||
assert!(!zero_s.verify(&public_key, &message));
|
||||
assert!(!call_verify(&provider, address, &public_key, &message, &zero_s).await);
|
||||
}
|
||||
|
||||
// Mutate the message and make sure the signature now fails to verify
|
||||
{
|
||||
let mut message = message.clone();
|
||||
message[0] = message[0].wrapping_add(1);
|
||||
assert!(!sig.verify(&public_key, &message));
|
||||
assert!(!call_verify(&provider, address, &public_key, &message, &sig).await);
|
||||
}
|
||||
|
||||
// Mutate c and make sure the signature now fails to verify
|
||||
{
|
||||
let mutated_c = Signature::new(c + Scalar::ONE, s).unwrap();
|
||||
assert!(!mutated_c.verify(&public_key, &message));
|
||||
assert!(!call_verify(&provider, address, &public_key, &message, &mutated_c).await);
|
||||
}
|
||||
|
||||
// Mutate s and make sure the signature now fails to verify
|
||||
{
|
||||
let mutated_s = Signature::new(c, s + Scalar::ONE).unwrap();
|
||||
assert!(!mutated_s.verify(&public_key, &message));
|
||||
assert!(!call_verify(&provider, address, &public_key, &message, &mutated_s).await);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -12,7 +12,7 @@ use k256::{
|
|||
|
||||
use alloy_core::primitives::Address;
|
||||
|
||||
use crate::{PublicKey, Signature};
|
||||
use crate::{Signature, tests::test_key};
|
||||
|
||||
// The ecrecover opcode, yet with if the y is odd replacing v
|
||||
fn ecrecover(message: Scalar, odd_y: bool, r: Scalar, s: Scalar) -> Option<[u8; 20]> {
|
||||
|
@ -64,12 +64,7 @@ fn test_ecrecover() {
|
|||
// of efficiently verifying Schnorr signatures in an Ethereum contract
|
||||
#[test]
|
||||
fn nonce_recovery_via_ecrecover() {
|
||||
let (key, public_key) = loop {
|
||||
let key = Scalar::random(&mut OsRng);
|
||||
if let Some(public_key) = PublicKey::new(ProjectivePoint::GENERATOR * key) {
|
||||
break (key, public_key);
|
||||
}
|
||||
};
|
||||
let (key, public_key) = test_key();
|
||||
|
||||
let nonce = Scalar::random(&mut OsRng);
|
||||
let R = ProjectivePoint::GENERATOR * nonce;
|
||||
|
@ -81,26 +76,28 @@ fn nonce_recovery_via_ecrecover() {
|
|||
let s = nonce + (c * key);
|
||||
|
||||
/*
|
||||
An ECDSA signature is `(r, s)` with `s = (H(m) + rx) / k`, where:
|
||||
- `m` is the message
|
||||
An ECDSA signature is `(r, s)` with `s = (m + (r * x)) / k`, where:
|
||||
- `m` is the hash of the message
|
||||
- `r` is the x-coordinate of the nonce, reduced into a scalar
|
||||
- `x` is the private key
|
||||
- `k` is the nonce
|
||||
|
||||
We fix the recovery ID to be for the even key with an x-coordinate < the order. Accordingly,
|
||||
`kG = Point::from(Even, r)`. This enables recovering the public key via
|
||||
`((s Point::from(Even, r)) - H(m)G) / r`.
|
||||
`k * G = Point::from(Even, r)`. This enables recovering the public key via
|
||||
`((s * Point::from(Even, r)) - (m * G)) / r`.
|
||||
|
||||
We want to calculate `R` from `(c, s)` where `s = r + cx`. That means we need to calculate
|
||||
`sG - cX`.
|
||||
`(s * G) - (c * X)`.
|
||||
|
||||
We can calculate `sG - cX` with `((s Point::from(Even, r)) - H(m)G) / r` if:
|
||||
- Latter `r` = `X.x`
|
||||
- Latter `s` = `c`
|
||||
- `H(m)` = former `s`
|
||||
This gets us to `(cX - sG) / X.x`. If we additionally scale the latter's `s, H(m)` values (the
|
||||
former's `c, s` values) by `X.x`, we get `cX - sG`. This just requires negating each to achieve
|
||||
`sG - cX`.
|
||||
We can calculate `(s * G) - (c * X)` with `((s * Point::from(Even, r)) - (m * G)) / r` if:
|
||||
- ECDSA `r` = `X.x`, the x-coordinate of the Schnorr public key
|
||||
- ECDSA `s` = `c`, the Schnorr signature's challenge
|
||||
- ECDSA `m` = Schnorr `s`
|
||||
This gets us to `((c * X) - (s * G)) / X.x`. If we additionally scale the ECDSA `s, m` values
|
||||
(the Schnorr `c, s` values) by `X.x`, we get `(c * X) - (s * G)`. This just requires negating
|
||||
to achieve `(s * G) - (c * X)`.
|
||||
|
||||
With `R`, we can recalculate and compare the challenges to confirm the signature is valid.
|
||||
*/
|
||||
let x_scalar = <Scalar as Reduce<U256>>::reduce_bytes(&public_key.point().to_affine().x());
|
||||
let sa = -(s * x_scalar);
|
||||
|
|
69
networks/ethereum/schnorr/src/tests/public_key.rs
Normal file
69
networks/ethereum/schnorr/src/tests/public_key.rs
Normal file
|
@ -0,0 +1,69 @@
|
|||
use rand_core::OsRng;
|
||||
|
||||
use subtle::Choice;
|
||||
use group::ff::{Field, PrimeField};
|
||||
use k256::{
|
||||
elliptic_curve::{
|
||||
FieldBytesEncoding,
|
||||
ops::Reduce,
|
||||
point::{AffineCoordinates, DecompressPoint},
|
||||
},
|
||||
AffinePoint, ProjectivePoint, Scalar, U256 as KU256,
|
||||
};
|
||||
|
||||
use crate::PublicKey;
|
||||
|
||||
// Generates a key usable within tests
|
||||
pub(crate) fn test_key() -> (Scalar, PublicKey) {
|
||||
loop {
|
||||
let key = Scalar::random(&mut OsRng);
|
||||
let point = ProjectivePoint::GENERATOR * key;
|
||||
if let Some(public_key) = PublicKey::new(point) {
|
||||
// While here, test `PublicKey::point` and its serialization functions
|
||||
assert_eq!(point, public_key.point());
|
||||
assert_eq!(PublicKey::from_eth_repr(public_key.eth_repr()).unwrap(), public_key);
|
||||
return (key, public_key);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_odd_key() {
|
||||
// We generate a valid key to ensure there's not some distinct reason this key is invalid
|
||||
let (_, key) = test_key();
|
||||
// We then take its point and negate it so its y-coordinate is odd
|
||||
let odd = -key.point();
|
||||
assert!(PublicKey::new(odd).is_none());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_non_mutual_key() {
|
||||
let mut x_coordinate = KU256::from(-(Scalar::ONE)).saturating_add(&KU256::ONE);
|
||||
|
||||
let y_is_odd = Choice::from(0);
|
||||
let non_mutual = loop {
|
||||
if let Some(point) = Option::<AffinePoint>::from(AffinePoint::decompress(
|
||||
&FieldBytesEncoding::encode_field_bytes(&x_coordinate),
|
||||
y_is_odd,
|
||||
)) {
|
||||
break point;
|
||||
}
|
||||
x_coordinate = x_coordinate.saturating_add(&KU256::ONE);
|
||||
};
|
||||
let x_coordinate = non_mutual.x();
|
||||
assert!(<Scalar as Reduce<KU256>>::reduce_bytes(&x_coordinate).to_repr() != x_coordinate);
|
||||
|
||||
// Even point whose x-coordinate isn't mutual to both fields (making it non-zero)
|
||||
assert!(PublicKey::new(non_mutual.into()).is_none());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_zero_key() {
|
||||
let y_is_odd = Choice::from(0);
|
||||
if let Some(A_affine) =
|
||||
Option::<AffinePoint>::from(AffinePoint::decompress(&[0; 32].into(), y_is_odd))
|
||||
{
|
||||
let A = ProjectivePoint::from(A_affine);
|
||||
assert!(PublicKey::new(A).is_none());
|
||||
}
|
||||
}
|
33
networks/ethereum/schnorr/src/tests/signature.rs
Normal file
33
networks/ethereum/schnorr/src/tests/signature.rs
Normal file
|
@ -0,0 +1,33 @@
|
|||
use rand_core::OsRng;
|
||||
|
||||
use group::ff::Field;
|
||||
use k256::Scalar;
|
||||
|
||||
use crate::Signature;
|
||||
|
||||
#[test]
|
||||
fn test_zero_challenge() {
|
||||
assert!(Signature::new(Scalar::ZERO, Scalar::random(&mut OsRng)).is_none());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_signature_serialization() {
|
||||
let c = Scalar::random(&mut OsRng);
|
||||
let s = Scalar::random(&mut OsRng);
|
||||
let sig = Signature::new(c, s).unwrap();
|
||||
assert_eq!(sig.c(), c);
|
||||
assert_eq!(sig.s(), s);
|
||||
|
||||
let sig_bytes = sig.to_bytes();
|
||||
assert_eq!(Signature::from_bytes(sig_bytes).unwrap(), sig);
|
||||
|
||||
{
|
||||
let mut sig_written_bytes = vec![];
|
||||
sig.write(&mut sig_written_bytes).unwrap();
|
||||
assert_eq!(sig_bytes.as_slice(), &sig_written_bytes);
|
||||
}
|
||||
|
||||
let mut sig_read_slice = sig_bytes.as_slice();
|
||||
assert_eq!(Signature::read(&mut sig_read_slice).unwrap(), sig);
|
||||
assert!(sig_read_slice.is_empty());
|
||||
}
|
|
@ -140,7 +140,7 @@ impl SignatureMachine<Transaction> for ActionSignatureMachine {
|
|||
self.machine.complete(shares).map(|signature| {
|
||||
let s = signature.s;
|
||||
let c = Signature::challenge(signature.R, &self.key, &self.action.message());
|
||||
Transaction(self.action, Signature::new(c, s))
|
||||
Transaction(self.action, Signature::new(c, s).unwrap())
|
||||
})
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue