Get Monero tests to pass on a brand new network

Updates decoy selection with an explicit panic, the removal of a divide 
by 0 (causing tests to fail on new chains), and a minor optimization 
when dealing with a large quantity of locked outputs.

Also increases documentation, acknowledging infinite loops and breakage 
from Monero more.
This commit is contained in:
Luke Parker 2022-05-13 00:05:34 -04:00
parent 3e7598315c
commit bb840da44d
No known key found for this signature in database
GPG key ID: F9F1386DB1E119B6
4 changed files with 85 additions and 24 deletions

View file

@ -12,6 +12,7 @@ use monero::VarInt;
use crate::{transaction::SpendableOutput, rpc::{RpcError, Rpc}};
const LOCK_WINDOW: usize = 10;
const MATURITY: u64 = 60;
const RECENT_WINDOW: usize = 15;
const BLOCK_TIME: usize = 120;
const BLOCKS_PER_YEAR: usize = 365 * 24 * 60 * 60 / BLOCK_TIME;
@ -32,8 +33,15 @@ async fn select_single<R: RngCore + CryptoRng>(
per_second: f64,
used: &mut HashSet<u64>
) -> Result<(u64, [EdwardsPoint; 2]), RpcError> {
// Panic if not enough decoys are available
// TODO: Simply create a TX with less than the target amount
if (high - MATURITY) < u64::try_from(DECOYS).unwrap() {
panic!("Not enough decoys available");
}
let mut o;
let mut output = None;
// Use a gamma distribution
while {
let mut age = GAMMA.sample(rng).exp();
if age > TIP_APPLICATION {
@ -48,13 +56,18 @@ async fn select_single<R: RngCore + CryptoRng>(
let i = distribution.partition_point(|s| *s < o);
let prev = if i == 0 { 0 } else { i - 1 };
let n = distribution[i] - distribution[prev];
o = distribution[prev] + (rng.next_u64() % n);
o = distribution[prev] + (rng.next_u64() % n.max(1));
(n == 0) || used.contains(&o) || {
output = rpc.get_outputs(&[o], height).await?[0];
if output.is_none() {
used.insert(o);
}
output.is_none()
}
}
} {}
// Insert the selected output
used.insert(o);
Ok((o, output.unwrap()))
}
@ -112,26 +125,47 @@ pub(crate) async fn select<R: RngCore + CryptoRng>(
let mut res = Vec::with_capacity(inputs.len());
for (i, o) in outputs.iter().enumerate() {
// If there's only the target amount of decoys available, remove the index of the output we're spending
// So we don't infinite loop while ignoring it
// TODO: If we're spending 2 outputs of a possible 11 outputs, this will still fail
used.remove(&o.0);
let mut decoys = Vec::with_capacity(DECOYS);
// Select the full amount of ring members in decoys, instead of just the actual decoys, in order
// to increase sample size
for _ in 0 .. DECOYS {
decoys.push(select_single(rng, rpc, height, &distribution, high, per_second, &mut used).await?);
}
decoys.sort_by(|a, b| a.0.cmp(&b.0));
// Add back this output
used.insert(o.0);
// Make sure the TX passes the sanity check that the median output is within the last 40%
// This actually checks the median is within the last third, a slightly more aggressive boundary,
// as the height used in this calculation will be slightly under the height this is sanity
// checked against
while decoys[DECOYS / 2].0 < (high * 2 / 3) {
// If it's not, update the bottom half with new values to ensure the median only moves up
for m in 0 .. DECOYS / 2 {
// We could not remove this, saving CPU time and removing low values as possibilities, yet
// it'd increase the amount of decoys required to create this transaction and some banned
// outputs may be the best options
used.remove(&decoys[m].0);
decoys[m] = select_single(rng, rpc, height, &distribution, high, per_second, &mut used).await?;
let target_median = high * 2 / 3;
// Sanity checks are only run when 1000 outputs are available
// We run this check whenever it's possible to satisfy
// This means we need the middle possible decoy to be above the target_median
// TODO: This will break if timelocks are used other than maturity on very small chains/chains
// of any size which use timelocks extremely frequently, as it'll try to satisfy an impossible
// condition
// Reduce target_median by each timelocked output found?
if (high - MATURITY) >= target_median {
while decoys[DECOYS / 2].0 < target_median {
// If it's not, update the bottom half with new values to ensure the median only moves up
for m in 0 .. DECOYS / 2 {
// We could not remove this, saving CPU time and removing low values as possibilities, yet
// it'd increase the amount of decoys required to create this transaction and some banned
// outputs may be the best options
used.remove(&decoys[m].0);
decoys[m] = select_single(rng, rpc, height, &distribution, high, per_second, &mut used).await?;
}
decoys.sort_by(|a, b| a.0.cmp(&b.0));
}
decoys.sort_by(|a, b| a.0.cmp(&b.0));
}
// Replace the closest selected decoy with the actual

View file

@ -1,8 +1,39 @@
use rand::rngs::OsRng;
use curve25519_dalek::constants::ED25519_BASEPOINT_TABLE;
use serde_json::json;
use monero_serai::rpc::{EmptyResponse, RpcError, Rpc};
use monero::{
network::Network,
util::{key::PublicKey, address::Address}
};
pub async fn mine_block(rpc: &Rpc, address: String) -> Result<EmptyResponse, RpcError> {
use monero_serai::{random_scalar, rpc::{EmptyResponse, RpcError, Rpc}};
pub async fn rpc() -> Rpc {
let rpc = Rpc::new("http://127.0.0.1:18081".to_string());
// Only run once
if rpc.get_height().await.unwrap() != 1 {
return rpc;
}
let addr = Address::standard(
Network::Mainnet,
PublicKey { point: (&random_scalar(&mut OsRng) * &ED25519_BASEPOINT_TABLE).compress() },
PublicKey { point: (&random_scalar(&mut OsRng) * &ED25519_BASEPOINT_TABLE).compress() }
).to_string();
// Mine enough blocks decoy selection doesn't fail
for _ in 0 .. 1 {
mine_block(&rpc, &addr).await.unwrap();
}
rpc
}
pub async fn mine_block(rpc: &Rpc, address: &str) -> Result<EmptyResponse, RpcError> {
rpc.rpc_call("json_rpc", Some(json!({
"method": "generateblocks",
"params": {

View file

@ -7,18 +7,14 @@ use monero::{
util::{key::PublicKey, address::Address}
};
use monero_serai::{
random_scalar,
transaction::{self, SignableTransaction},
rpc::Rpc
};
use monero_serai::{random_scalar, transaction::{self, SignableTransaction}};
mod rpc;
use crate::rpc::mine_block;
use crate::rpc::{rpc, mine_block};
#[tokio::test]
pub async fn send() {
let rpc = Rpc::new("http://127.0.0.1:18081".to_string());
let rpc = rpc().await;
// Generate an address
let view = random_scalar(&mut OsRng);
@ -40,7 +36,7 @@ pub async fn send() {
for i in 0 .. 2 {
let start = rpc.get_height().await.unwrap();
for _ in 0 .. 7 {
mine_block(&rpc, addr.to_string()).await.unwrap();
mine_block(&rpc, &addr.to_string()).await.unwrap();
}
// Test both a miner output and a normal output

View file

@ -13,17 +13,17 @@ use monero::{
util::{key::PublicKey, address::Address}
};
use monero_serai::{transaction::{self, SignableTransaction}, rpc::Rpc};
use monero_serai::transaction::{self, SignableTransaction};
mod rpc;
use crate::rpc::mine_block;
use crate::rpc::{rpc, mine_block};
mod frost;
use crate::frost::{THRESHOLD, generate_keys, sign};
#[tokio::test]
pub async fn send_multisig() {
let rpc = Rpc::new("http://127.0.0.1:18081".to_string());
let rpc = rpc().await;
let fee_per_byte = 50000000;
let fee = fee_per_byte * 2000;
@ -43,7 +43,7 @@ pub async fn send_multisig() {
// Mine blocks to that address
let start = rpc.get_height().await.unwrap();
for _ in 0 .. 7 {
mine_block(&rpc, addr.to_string()).await.unwrap();
mine_block(&rpc, &addr.to_string()).await.unwrap();
}
// Get the input TX