Optimize decoy selection

Saves roughly 0.8s when running the tests, which took 16.6s and now take 
15.8 (5%).

Removes the larger sample size, which replaced the closest selected 
decoy with the real spend, per advice of Rucknium.
This commit is contained in:
Luke Parker 2022-05-28 03:17:02 -04:00
parent 469ce9106b
commit ba032cca4a
No known key found for this signature in database
GPG key ID: F9F1386DB1E119B6
3 changed files with 78 additions and 68 deletions

View file

@ -16,7 +16,8 @@ const BLOCK_TIME: usize = 120;
const BLOCKS_PER_YEAR: usize = 365 * 24 * 60 * 60 / BLOCK_TIME;
const TIP_APPLICATION: f64 = (LOCK_WINDOW * BLOCK_TIME) as f64;
const DECOYS: usize = 11;
const RING_LEN: usize = 11;
const DECOYS: usize = RING_LEN - 1;
lazy_static! {
static ref GAMMA: Gamma<f64> = Gamma::new(19.28, 1.0 / 1.61).unwrap();
@ -32,12 +33,6 @@ async fn select_n<R: RngCore + CryptoRng>(
used: &mut HashSet<u64>,
count: usize
) -> Result<Vec<(u64, [EdwardsPoint; 2])>, RpcError> {
// Panic if not enough decoys are available
// TODO: Simply create a TX with less than the target amount
if (high - MATURITY) < u64::try_from(DECOYS).unwrap() {
panic!("Not enough decoys available");
}
let mut confirmed = Vec::with_capacity(count);
while confirmed.len() != count {
let remaining = count - confirmed.len();
@ -79,11 +74,11 @@ async fn select_n<R: RngCore + CryptoRng>(
Ok(confirmed)
}
fn offset(decoys: &[u64]) -> Vec<u64> {
let mut res = vec![decoys[0]];
res.resize(decoys.len(), 0);
for m in (1 .. decoys.len()).rev() {
res[m] = decoys[m] - decoys[m - 1];
fn offset(ring: &[u64]) -> Vec<u64> {
let mut res = vec![ring[0]];
res.resize(ring.len(), 0);
for m in (1 .. ring.len()).rev() {
res[m] = ring[m] - ring[m - 1];
}
res
}
@ -128,68 +123,76 @@ impl Decoys {
used.insert(o.0);
}
// Panic if not enough decoys are available
// TODO: Simply create a TX with less than the target amount, or at least return an error
if (high - MATURITY) < u64::try_from(inputs.len() * RING_LEN).unwrap() {
panic!("Not enough decoys available");
}
// Select all decoys for this transaction, assuming we generate a sane transaction
// We should almost never naturally generate an insane transaction, hence why this doesn't bother
// with an overage
let mut decoys = select_n(
rng,
rpc,
height,
&distribution,
high,
per_second,
&mut used,
inputs.len() * DECOYS
).await?;
let mut res = Vec::with_capacity(inputs.len());
for (i, o) in outputs.iter().enumerate() {
// If there's only the target amount of decoys available, remove the index of the output we're spending
// So we don't infinite loop while ignoring it
// TODO: If we're spending 2 outputs of a possible 11 outputs, this will still fail
used.remove(&o.0);
// Select the full amount of ring members in decoys, instead of just the actual decoys, in order
// to increase sample size
let mut decoys = select_n(rng, rpc, height, &distribution, high, per_second, &mut used, DECOYS).await?;
decoys.sort_by(|a, b| a.0.cmp(&b.0));
// Add back this output
used.insert(o.0);
for o in outputs {
// Grab the decoys for this specific output
let mut ring = decoys.drain((decoys.len() - DECOYS) ..).collect::<Vec<_>>();
ring.push(o);
ring.sort_by(|a, b| a.0.cmp(&b.0));
// Sanity checks are only run when 1000 outputs are available in Monero
// We run this check whenever the highest output index, which we acknowledge, is > 500
// This means we assume (for presumably test blockchains) the height being used has not had
// 500 outputs since while itself not being a sufficiently mature blockchain
// Considering Monero's p2p layer doesn't actually check transaction sanity, it should be
// fine for us to not have perfectly matching rules, especially since this code will infinite
// loop if it can't determine sanity, which is possible with sufficient inputs on sufficiently
// small chains
if high > 500 {
// Make sure the TX passes the sanity check that the median output is within the last 40%
// This actually checks the median is within the last third, a slightly more aggressive boundary,
// as the height used in this calculation will be slightly under the height this is sanity
// checked against
// This actually checks the median is within the last third, a slightly more aggressive
// boundary, as the height used in this calculation will be slightly under the height this is
// sanity checked against
let target_median = high * 2 / 3;
// Sanity checks are only run when 1000 outputs are available
// We run this check whenever it's possible to satisfy
// This means we need the middle possible decoy to be above the target_median
// TODO: This will break if timelocks are used other than maturity on very small chains/chains
// of any size which use timelocks extremely frequently, as it'll try to satisfy an impossible
// condition
// Reduce target_median by each timelocked output found?
if (high - MATURITY) >= target_median {
while decoys[DECOYS / 2].0 < target_median {
while ring[RING_LEN / 2].0 < target_median {
// If it's not, update the bottom half with new values to ensure the median only moves up
for m in 0 .. DECOYS / 2 {
for removed in ring.drain(0 .. (RING_LEN / 2)).collect::<Vec<_>>() {
// If we removed the real spend, add it back
if removed.0 == o.0 {
ring.push(o);
} else {
// We could not remove this, saving CPU time and removing low values as possibilities, yet
// it'd increase the amount of decoys required to create this transaction and some banned
// outputs may be the best options
used.remove(&decoys[m].0);
// it'd increase the amount of decoys required to create this transaction and some removed
// outputs may be the best option (as we drop the first half, not just the bottom n)
used.remove(&removed.0);
}
}
decoys.splice(
0 .. DECOYS / 2,
select_n(rng, rpc, height, &distribution, high, per_second, &mut used, DECOYS / 2).await?
// Select new outputs until we have a full sized ring again
ring.extend(
select_n(rng, rpc, height, &distribution, high, per_second, &mut used, RING_LEN - ring.len()).await?
);
decoys.sort_by(|a, b| a.0.cmp(&b.0));
}
ring.sort_by(|a, b| a.0.cmp(&b.0));
}
// Replace the closest selected decoy with the actual
let mut replace = 0;
let mut distance = u64::MAX;
for m in 0 .. decoys.len() {
let diff = decoys[m].0.abs_diff(o.0);
if diff < distance {
replace = m;
distance = diff;
}
// The other sanity check rule is about duplicates, yet we already enforce unique ring members
}
decoys[replace] = outputs[i];
res.push(Decoys {
i: u8::try_from(replace).unwrap(),
offsets: offset(&decoys.iter().map(|output| output.0).collect::<Vec<_>>()),
ring: decoys.iter().map(|output| output.1).collect()
// Binary searches for the real spend since we don't know where it sorted to
i: u8::try_from(ring.partition_point(|x| x.0 < o.0)).unwrap(),
offsets: offset(&ring.iter().map(|output| output.0).collect::<Vec<_>>()),
ring: ring.iter().map(|output| output.1).collect()
});
}

View file

@ -25,10 +25,8 @@ pub async fn rpc() -> Rpc {
PublicKey { point: (&random_scalar(&mut OsRng) * &ED25519_BASEPOINT_TABLE).compress() }
).to_string();
// Mine enough blocks decoy selection doesn't fail
for _ in 0 .. 1 {
// Mine 10 blocks so we have 10 decoys so decoy selection doesn't fail
mine_block(&rpc, &addr).await.unwrap();
}
rpc
}

View file

@ -113,6 +113,15 @@ async fn send_core(test: usize, multisig: bool) {
continue;
}
// We actually need 80 decoys for this transaction, so mine until then
// 80 + 60 (miner TX maturity) + 10 (lock blocks)
// It is possible for this to be lower, by noting maturity is sufficient regardless of lock
// blocks, yet that's not currently implemented
// TODO, if we care
while rpc.get_height().await.unwrap() < 160 {
mine_block(&rpc, &addr.to_string()).await.unwrap();
}
for i in (start + 1) .. (start + 9) {
let tx = rpc.get_block_transactions(i).await.unwrap().swap_remove(0);
let output = tx.scan(view, spend_pub).swap_remove(0);