Merge branch 'develop' into firo

This commit is contained in:
Luke Parker 2022-07-13 02:48:54 -04:00
commit 9b3985e120
No known key found for this signature in database
GPG key ID: F9F1386DB1E119B6
28 changed files with 489 additions and 427 deletions

View file

@ -31,7 +31,7 @@ dalek-ff-group = { path = "../../crypto/dalek-ff-group" }
transcript = { package = "flexible-transcript", path = "../../crypto/transcript", features = ["recommended"], optional = true }
frost = { package = "modular-frost", path = "../../crypto/frost", features = ["ed25519"], optional = true }
dleq = { path = "../../crypto/dleq", features = ["serialize"], optional = true }
dleq = { package = "dleq-serai", path = "../../crypto/dleq", features = ["serialize"], optional = true }
hex = "0.4"
serde = { version = "1.0", features = ["derive"] }

View file

@ -1,4 +1,4 @@
use std::{convert::TryInto, io::Cursor};
use std::io::Read;
use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
@ -47,17 +47,14 @@ pub(crate) fn write_dleq<R: RngCore + CryptoRng>(
}
#[allow(non_snake_case)]
pub(crate) fn read_dleq(
serialized: &[u8],
pub(crate) fn read_dleq<Re: Read>(
serialized: &mut Re,
H: EdwardsPoint,
l: u16,
xG: dfg::EdwardsPoint
) -> Result<dfg::EdwardsPoint, MultisigError> {
if serialized.len() != 96 {
Err(MultisigError::InvalidDLEqProof(l))?;
}
let bytes = (&serialized[.. 32]).try_into().unwrap();
let mut bytes = [0; 32];
serialized.read_exact(&mut bytes).map_err(|_| MultisigError::InvalidDLEqProof(l))?;
// dfg ensures the point is torsion free
let xH = Option::<dfg::EdwardsPoint>::from(
dfg::EdwardsPoint::from_bytes(&bytes)).ok_or(MultisigError::InvalidDLEqProof(l)
@ -68,7 +65,7 @@ pub(crate) fn read_dleq(
}
DLEqProof::<dfg::EdwardsPoint>::deserialize(
&mut Cursor::new(&serialized[32 ..])
serialized
).map_err(|_| MultisigError::InvalidDLEqProof(l))?.verify(
&mut transcript(),
Generators::new(dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(H)),

View file

@ -1,5 +1,5 @@
use core::fmt::Debug;
use std::sync::{Arc, RwLock};
use std::{io::Read, sync::{Arc, RwLock}};
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha12Rng;
@ -104,7 +104,7 @@ impl ClsagMultisig {
)
}
pub fn serialized_len() -> usize {
pub const fn serialized_len() -> usize {
32 + (2 * 32)
}
@ -136,17 +136,12 @@ impl Algorithm<Ed25519> for ClsagMultisig {
serialized
}
fn process_addendum(
fn process_addendum<Re: Read>(
&mut self,
view: &FrostView<Ed25519>,
l: u16,
serialized: &[u8]
serialized: &mut Re
) -> Result<(), FrostError> {
if serialized.len() != Self::serialized_len() {
// Not an optimal error but...
Err(FrostError::InvalidCommitment(l))?;
}
if self.image.is_identity().into() {
self.transcript.domain_separate(b"CLSAG");
self.input().transcript(&mut self.transcript);
@ -154,13 +149,14 @@ impl Algorithm<Ed25519> for ClsagMultisig {
}
self.transcript.append_message(b"participant", &l.to_be_bytes());
self.transcript.append_message(b"key_image_share", &serialized[.. 32]);
self.image += read_dleq(
let image = read_dleq(
serialized,
self.H,
l,
view.verification_share(l)
).map_err(|_| FrostError::InvalidCommitment(l))?.0;
self.transcript.append_message(b"key_image_share", image.compress().to_bytes().as_ref());
self.image += image;
Ok(())
}

View file

@ -2,12 +2,12 @@ use rand::rngs::OsRng;
use curve25519_dalek::constants::ED25519_BASEPOINT_TABLE;
use crate::{random_scalar, ringct::hash_to_point::{hash_to_point, rust_hash_to_point}};
use crate::{random_scalar, ringct::hash_to_point::{hash_to_point as c_hash_to_point, rust_hash_to_point}};
#[test]
fn test_hash_to_point() {
for _ in 0 .. 200 {
fn hash_to_point() {
for _ in 0 .. 50 {
let point = &random_scalar(&mut OsRng) * &ED25519_BASEPOINT_TABLE;
assert_eq!(rust_hash_to_point(point), hash_to_point(point));
assert_eq!(rust_hash_to_point(point), c_hash_to_point(point));
}
}

View file

@ -1,4 +1,4 @@
use std::{sync::{Arc, RwLock}, collections::HashMap};
use std::{io::{Read, Cursor}, sync::{Arc, RwLock}, collections::HashMap};
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha12Rng;
@ -202,57 +202,57 @@ impl PreprocessMachine for TransactionMachine {
impl SignMachine<Transaction> for TransactionSignMachine {
type SignatureMachine = TransactionSignatureMachine;
fn sign(
fn sign<Re: Read>(
mut self,
mut commitments: HashMap<u16, Vec<u8>>,
mut commitments: HashMap<u16, Re>,
msg: &[u8]
) -> Result<(TransactionSignatureMachine, Vec<u8>), FrostError> {
if msg.len() != 0 {
Err(
FrostError::InternalError(
"message was passed to the TransactionMachine when it generates its own".to_string()
"message was passed to the TransactionMachine when it generates its own"
)
)?;
}
// Add all commitments to the transcript for their entropy
// While each CLSAG will do this as they need to for security, they have their own transcripts
// cloned from this TX's initial premise's transcript. For our TX transcript to have the CLSAG
// data for entropy, it'll have to be added ourselves
commitments.insert(self.i, self.our_preprocess);
for l in &self.included {
self.transcript.append_message(b"participant", &(*l).to_be_bytes());
// FROST itself will error if this is None, so let it
if let Some(preprocess) = commitments.get(l) {
self.transcript.append_message(b"preprocess", preprocess);
}
}
// FROST commitments and their DLEqs, and the image and its DLEq
let clsag_len = (2 * (32 + 32)) + (2 * (32 + 32)) + ClsagMultisig::serialized_len();
for (l, commitments) in &commitments {
if commitments.len() != (self.clsags.len() * clsag_len) {
Err(FrostError::InvalidCommitment(*l))?;
}
}
const CLSAG_LEN: usize = (2 * (32 + 32)) + (2 * (32 + 32)) + ClsagMultisig::serialized_len();
// Convert the unified commitments to a Vec of the individual commitments
let mut commitments = (0 .. self.clsags.len()).map(|_| commitments.iter_mut().map(
|(l, commitments)| (*l, commitments.drain(.. clsag_len).collect::<Vec<_>>())
).collect::<HashMap<_, _>>()).collect::<Vec<_>>();
// Calculate the key images
// Clsag will parse/calculate/validate this as needed, yet doing so here as well provides
// the easiest API overall, as this is where the TX is (which needs the key images in its
// message), along with where the outputs are determined (where our change output needs these
// to be unique)
let mut images = vec![EdwardsPoint::identity(); self.clsags.len()];
for c in 0 .. self.clsags.len() {
for (l, preprocess) in &commitments[c] {
let mut commitments = (0 .. self.clsags.len()).map(|c| {
let mut buf = [0; CLSAG_LEN];
(&self.included).iter().map(|l| {
// Add all commitments to the transcript for their entropy
// While each CLSAG will do this as they need to for security, they have their own transcripts
// cloned from this TX's initial premise's transcript. For our TX transcript to have the CLSAG
// data for entropy, it'll have to be added ourselves here
self.transcript.append_message(b"participant", &(*l).to_be_bytes());
if *l == self.i {
buf.copy_from_slice(self.our_preprocess.drain(.. CLSAG_LEN).as_slice());
} else {
commitments.get_mut(l).ok_or(FrostError::MissingParticipant(*l))?
.read_exact(&mut buf).map_err(|_| FrostError::InvalidCommitment(*l))?;
}
self.transcript.append_message(b"preprocess", &buf);
// While here, calculate the key image
// Clsag will parse/calculate/validate this as needed, yet doing so here as well provides
// the easiest API overall, as this is where the TX is (which needs the key images in its
// message), along with where the outputs are determined (where our outputs may need
// these in order to guarantee uniqueness)
images[c] += CompressedEdwardsY(
preprocess[(clsag_len - 96) .. (clsag_len - 64)].try_into().map_err(|_| FrostError::InvalidCommitment(*l))?
buf[(CLSAG_LEN - 96) .. (CLSAG_LEN - 64)].try_into().map_err(|_| FrostError::InvalidCommitment(*l))?
).decompress().ok_or(FrostError::InvalidCommitment(*l))?;
}
Ok((*l, Cursor::new(buf)))
}).collect::<Result<HashMap<_, _>, _>>()
}).collect::<Result<Vec<_>, _>>()?;
// Remove our preprocess which shouldn't be here. It was just the easiest way to implement the
// above
for map in commitments.iter_mut() {
map.remove(&self.i);
}
// Create the actual transaction
@ -345,16 +345,18 @@ impl SignMachine<Transaction> for TransactionSignMachine {
}
impl SignatureMachine<Transaction> for TransactionSignatureMachine {
fn complete(self, mut shares: HashMap<u16, Vec<u8>>) -> Result<Transaction, FrostError> {
fn complete<Re: Read>(self, mut shares: HashMap<u16, Re>) -> Result<Transaction, FrostError> {
let mut tx = self.tx;
match tx.rct_signatures.prunable {
RctPrunable::Null => panic!("Signing for RctPrunable::Null"),
RctPrunable::Clsag { ref mut clsags, ref mut pseudo_outs, .. } => {
for clsag in self.clsags {
let (clsag, pseudo_out) = clsag.complete(
shares.iter_mut().map(
|(l, shares)| (*l, shares.drain(.. 32).collect())
).collect::<HashMap<_, _>>()
shares.iter_mut().map(|(l, shares)| {
let mut buf = [0; 32];
shares.read_exact(&mut buf).map_err(|_| FrostError::InvalidShare(*l))?;
Ok((*l, Cursor::new(buf)))
}).collect::<Result<HashMap<_, _>, _>>()?
)?;
clsags.push(clsag);
pseudo_outs.push(pseudo_out);

View file

@ -1,6 +1,6 @@
[package]
name = "dalek-ff-group"
version = "0.1.1"
version = "0.1.2"
description = "ff/group bindings around curve25519-dalek"
license = "MIT"
repository = "https://github.com/serai-dex/serai"

View file

@ -1,5 +1,5 @@
[package]
name = "dleq"
name = "dleq-serai"
version = "0.1.0"
description = "Implementation of single and cross-curve Discrete Log Equality proofs"
license = "MIT"
@ -17,7 +17,7 @@ transcript = { package = "flexible-transcript", path = "../transcript", version
ff = "0.12"
group = "0.12"
multiexp = { path = "../multiexp", features = ["batch"], optional = true }
multiexp = { path = "../multiexp", version = "0.2", features = ["batch"], optional = true }
[dev-dependencies]
hex-literal = "0.3"

View file

@ -7,9 +7,9 @@ use group::{Group, GroupEncoding};
use blake2::{Digest, Blake2b512};
use k256::{Scalar, ProjectivePoint};
use dalek_ff_group::{self as dfg, EdwardsPoint, CompressedEdwardsY};
use dalek_ff_group::{self as dfg, EdwardsPoint};
use transcript::RecommendedTranscript;
use transcript::{Transcript, RecommendedTranscript};
use crate::{
Generators,
@ -41,9 +41,9 @@ pub(crate) fn generators() -> (Generators<G0>, Generators<G1>) {
Generators::new(
EdwardsPoint::generator(),
CompressedEdwardsY::new(
hex!("8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94")
).decompress().unwrap()
EdwardsPoint::from_bytes(
&hex!("8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94")
).unwrap()
)
)
}

View file

@ -3,7 +3,7 @@ use rand_core::OsRng;
use group::{ff::{Field, PrimeFieldBits}, prime::PrimeGroup};
use multiexp::BatchVerifier;
use transcript::RecommendedTranscript;
use transcript::{Transcript, RecommendedTranscript};
use crate::cross_group::schnorr::SchnorrPoK;

View file

@ -9,7 +9,7 @@ use group::GroupEncoding;
use k256::{Scalar, ProjectivePoint};
use transcript::RecommendedTranscript;
use transcript::{Transcript, RecommendedTranscript};
use crate::{Generators, DLEqProof};

View file

@ -1,6 +1,6 @@
[package]
name = "modular-frost"
version = "0.1.0"
version = "0.2.0"
description = "Modular implementation of FROST over ff/group"
license = "MIT"
repository = "https://github.com/serai-dex/serai"
@ -26,9 +26,9 @@ dalek-ff-group = { path = "../dalek-ff-group", version = "0.1", optional = true
transcript = { package = "flexible-transcript", path = "../transcript", version = "0.1" }
multiexp = { path = "../multiexp", version = "0.1", features = ["batch"] }
multiexp = { path = "../multiexp", version = "0.2", features = ["batch"] }
dleq = { package = "dleq", path = "../dleq", version = "0.1", features = ["serialize"] }
dleq = { package = "dleq-serai", path = "../dleq", version = "0.1", features = ["serialize"] }
[dev-dependencies]
rand = "0.8"

View file

@ -1,4 +1,5 @@
use core::{marker::PhantomData, fmt::Debug};
use std::io::Read;
use rand_core::{RngCore, CryptoRng};
@ -28,11 +29,11 @@ pub trait Algorithm<C: Curve>: Clone {
) -> Vec<u8>;
/// Proccess the addendum for the specified participant. Guaranteed to be ordered
fn process_addendum(
fn process_addendum<Re: Read>(
&mut self,
params: &FrostView<C>,
l: u16,
serialized: &[u8],
reader: &mut Re,
) -> Result<(), FrostError>;
/// Sign a share with the given secret/nonce
@ -70,7 +71,7 @@ impl Transcript for IetfTranscript {
type Challenge = Vec<u8>;
fn new(_: &'static [u8]) -> IetfTranscript {
unimplemented!("IetfTranscript should not be used with multiple nonce protocols");
IetfTranscript(vec![])
}
fn domain_separate(&mut self, _: &[u8]) {}
@ -134,11 +135,11 @@ impl<C: Curve, H: Hram<C>> Algorithm<C> for Schnorr<C, H> {
vec![]
}
fn process_addendum(
fn process_addendum<Re: Read>(
&mut self,
_: &FrostView<C>,
_: u16,
_: &[u8],
_: &mut Re,
) -> Result<(), FrostError> {
Ok(())
}

View file

@ -1,3 +1,5 @@
use std::io::Cursor;
use rand_core::{RngCore, CryptoRng};
use sha2::{digest::Update, Digest, Sha256};
@ -6,7 +8,7 @@ use group::{ff::Field, GroupEncoding};
use elliptic_curve::{bigint::{Encoding, U384}, hash2curve::{Expander, ExpandMsg, ExpandMsgXmd}};
use crate::{curve::{Curve, F_from_slice}, algorithm::Hram};
use crate::{curve::Curve, algorithm::Hram};
macro_rules! kp_curve {
(
@ -58,16 +60,18 @@ macro_rules! kp_curve {
let mut modulus = vec![0; 16];
modulus.extend((Self::F::zero() - Self::F::one()).to_bytes());
let modulus = U384::from_be_slice(&modulus).wrapping_add(&U384::ONE);
F_from_slice::<Self::F>(
&U384::from_be_slice(&{
let mut bytes = [0; 48];
ExpandMsgXmd::<Sha256>::expand_message(
&[msg],
dst,
48
).unwrap().fill_bytes(&mut bytes);
bytes
}).reduce(&modulus).unwrap().to_be_bytes()[16 ..]
Self::read_F(
&mut Cursor::new(
&U384::from_be_slice(&{
let mut bytes = [0; 48];
ExpandMsgXmd::<Sha256>::expand_message(
&[msg],
dst,
48
).unwrap().fill_bytes(&mut bytes);
bytes
}).reduce(&modulus).unwrap().to_be_bytes()[16 ..]
)
).unwrap()
}
}
@ -101,5 +105,5 @@ kp_curve!(
Secp256k1,
NonIetfSecp256k1Hram,
b"secp256k1",
b"FROST-secp256k1-SHA256-v5"
b"FROST-secp256k1-SHA256-v7"
);

View file

@ -1,4 +1,5 @@
use core::fmt::Debug;
use std::io::Read;
use thiserror::Error;
@ -77,41 +78,37 @@ pub trait Curve: Clone + Copy + PartialEq + Eq + Debug {
// hash_msg and hash_binding_factor
#[allow(non_snake_case)]
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F;
}
#[allow(non_snake_case)]
pub(crate) fn F_len<C: Curve>() -> usize {
<C::F as PrimeField>::Repr::default().as_ref().len()
}
#[allow(non_snake_case)]
pub(crate) fn G_len<C: Curve>() -> usize {
<C::G as GroupEncoding>::Repr::default().as_ref().len()
}
/// Field element from slice
#[allow(non_snake_case)]
pub(crate) fn F_from_slice<F: PrimeField>(slice: &[u8]) -> Result<F, CurveError> {
let mut encoding = F::Repr::default();
encoding.as_mut().copy_from_slice(slice);
let point = Option::<F>::from(F::from_repr(encoding)).ok_or(CurveError::InvalidScalar)?;
if point.to_repr().as_ref() != slice {
Err(CurveError::InvalidScalar)?;
#[allow(non_snake_case)]
fn F_len() -> usize {
<Self::F as PrimeField>::Repr::default().as_ref().len()
}
Ok(point)
}
/// Group element from slice
#[allow(non_snake_case)]
pub(crate) fn G_from_slice<G: PrimeGroup>(slice: &[u8]) -> Result<G, CurveError> {
let mut encoding = G::Repr::default();
encoding.as_mut().copy_from_slice(slice);
let point = Option::<G>::from(G::from_bytes(&encoding)).ok_or(CurveError::InvalidPoint)?;
// Ban the identity, per the FROST spec, and non-canonical points
if (point.is_identity().into()) || (point.to_bytes().as_ref() != slice) {
Err(CurveError::InvalidPoint)?;
#[allow(non_snake_case)]
fn G_len() -> usize {
<Self::G as GroupEncoding>::Repr::default().as_ref().len()
}
#[allow(non_snake_case)]
fn read_F<R: Read>(r: &mut R) -> Result<Self::F, CurveError> {
let mut encoding = <Self::F as PrimeField>::Repr::default();
r.read_exact(encoding.as_mut()).map_err(|_| CurveError::InvalidScalar)?;
// ff mandates this is canonical
Option::<Self::F>::from(Self::F::from_repr(encoding)).ok_or(CurveError::InvalidScalar)
}
#[allow(non_snake_case)]
fn read_G<R: Read>(r: &mut R) -> Result<Self::G, CurveError> {
let mut encoding = <Self::G as GroupEncoding>::Repr::default();
r.read_exact(encoding.as_mut()).map_err(|_| CurveError::InvalidPoint)?;
let point = Option::<Self::G>::from(
Self::G::from_bytes(&encoding)
).ok_or(CurveError::InvalidPoint)?;
// Ban the identity, per the FROST spec, and non-canonical points
if (point.is_identity().into()) || (point.to_bytes().as_ref() != encoding.as_ref()) {
Err(CurveError::InvalidPoint)?;
}
Ok(point)
}
Ok(point)
}

View file

@ -1,4 +1,4 @@
use std::{marker::PhantomData, collections::HashMap};
use std::{marker::PhantomData, io::{Read, Cursor}, collections::HashMap};
use rand_core::{RngCore, CryptoRng};
@ -7,7 +7,7 @@ use group::{ff::{Field, PrimeField}, GroupEncoding};
use multiexp::{multiexp_vartime, BatchVerifier};
use crate::{
curve::{Curve, F_len, G_len, F_from_slice, G_from_slice},
curve::Curve,
FrostError, FrostParams, FrostKeys,
schnorr::{self, SchnorrSignature},
validate_map
@ -31,11 +31,11 @@ fn generate_key_r1<R: RngCore + CryptoRng, C: Curve>(
rng: &mut R,
params: &FrostParams,
context: &str,
) -> (Vec<C::F>, Vec<u8>) {
) -> (Vec<C::F>, Vec<C::G>, Vec<u8>) {
let t = usize::from(params.t);
let mut coefficients = Vec::with_capacity(t);
let mut commitments = Vec::with_capacity(t);
let mut serialized = Vec::with_capacity((G_len::<C>() * t) + G_len::<C>() + F_len::<C>());
let mut serialized = Vec::with_capacity((C::G_len() * t) + C::G_len() + C::F_len());
for i in 0 .. t {
// Step 1: Generate t random values to form a polynomial with
@ -66,58 +66,55 @@ fn generate_key_r1<R: RngCore + CryptoRng, C: Curve>(
);
// Step 4: Broadcast
(coefficients, serialized)
(coefficients, commitments, serialized)
}
// Verify the received data from the first round of key generation
fn verify_r1<R: RngCore + CryptoRng, C: Curve>(
fn verify_r1<Re: Read, R: RngCore + CryptoRng, C: Curve>(
rng: &mut R,
params: &FrostParams,
context: &str,
our_commitments: Vec<u8>,
mut serialized: HashMap<u16, Vec<u8>>,
our_commitments: Vec<C::G>,
mut serialized: HashMap<u16, Re>,
) -> Result<HashMap<u16, Vec<C::G>>, FrostError> {
validate_map(
&mut serialized,
&(1 ..= params.n()).into_iter().collect::<Vec<_>>(),
(params.i(), our_commitments)
)?;
let commitments_len = usize::from(params.t()) * G_len::<C>();
validate_map(&mut serialized, &(1 ..= params.n()).collect::<Vec<_>>(), params.i())?;
let mut commitments = HashMap::new();
#[allow(non_snake_case)]
let R_bytes = |l| &serialized[&l][commitments_len .. commitments_len + G_len::<C>()];
#[allow(non_snake_case)]
let R = |l| G_from_slice::<C::G>(R_bytes(l)).map_err(|_| FrostError::InvalidProofOfKnowledge(l));
#[allow(non_snake_case)]
let Am = |l| &serialized[&l][0 .. commitments_len];
let s = |l| F_from_slice::<C::F>(
&serialized[&l][commitments_len + G_len::<C>() ..]
).map_err(|_| FrostError::InvalidProofOfKnowledge(l));
commitments.insert(params.i, our_commitments);
let mut signatures = Vec::with_capacity(usize::from(params.n() - 1));
for l in 1 ..= params.n() {
if l == params.i {
continue;
}
let invalid = FrostError::InvalidCommitment(l.try_into().unwrap());
// Read the entire list of commitments as the key we're providing a PoK for (A) and the message
#[allow(non_snake_case)]
let mut Am = vec![0; usize::from(params.t()) * C::G_len()];
serialized.get_mut(&l).unwrap().read_exact(&mut Am).map_err(|_| invalid)?;
let mut these_commitments = vec![];
for c in 0 .. usize::from(params.t()) {
these_commitments.push(
G_from_slice::<C::G>(
&serialized[&l][(c * G_len::<C>()) .. ((c + 1) * G_len::<C>())]
).map_err(|_| FrostError::InvalidCommitment(l.try_into().unwrap()))?
);
let mut cursor = Cursor::new(&Am);
for _ in 0 .. usize::from(params.t()) {
these_commitments.push(C::read_G(&mut cursor).map_err(|_| invalid)?);
}
// Don't bother validating our own proof of knowledge
if l != params.i() {
let cursor = serialized.get_mut(&l).unwrap();
#[allow(non_snake_case)]
let R = C::read_G(cursor).map_err(|_| FrostError::InvalidProofOfKnowledge(l))?;
let s = C::read_F(cursor).map_err(|_| FrostError::InvalidProofOfKnowledge(l))?;
// Step 5: Validate each proof of knowledge
// This is solely the prep step for the latter batch verification
signatures.push((
l,
these_commitments[0],
challenge::<C>(context, l, R_bytes(l), Am(l)),
SchnorrSignature::<C> { R: R(l)?, s: s(l)? }
challenge::<C>(context, l, R.to_bytes().as_ref(), &Am),
SchnorrSignature::<C> { R, s }
));
}
@ -147,15 +144,15 @@ fn polynomial<F: PrimeField>(
// Implements round 1, step 5 and round 2, step 1 of FROST key generation
// Returns our secret share part, commitments for the next step, and a vector for each
// counterparty to receive
fn generate_key_r2<R: RngCore + CryptoRng, C: Curve>(
fn generate_key_r2<Re: Read, R: RngCore + CryptoRng, C: Curve>(
rng: &mut R,
params: &FrostParams,
context: &str,
coefficients: Vec<C::F>,
our_commitments: Vec<u8>,
commitments: HashMap<u16, Vec<u8>>,
our_commitments: Vec<C::G>,
commitments: HashMap<u16, Re>,
) -> Result<(C::F, HashMap<u16, Vec<C::G>>, HashMap<u16, Vec<u8>>), FrostError> {
let commitments = verify_r1::<R, C>(rng, params, context, our_commitments, commitments)?;
let commitments = verify_r1::<_, _, C>(rng, params, context, our_commitments, commitments)?;
// Step 1: Generate secret shares for all other parties
let mut res = HashMap::new();
@ -188,25 +185,21 @@ fn generate_key_r2<R: RngCore + CryptoRng, C: Curve>(
/// issue, yet simply confirming protocol completion without issue is enough to confirm the same
/// key was generated as long as a lack of duplicated commitments was also confirmed when they were
/// broadcasted initially
fn complete_r2<R: RngCore + CryptoRng, C: Curve>(
fn complete_r2<Re: Read, R: RngCore + CryptoRng, C: Curve>(
rng: &mut R,
params: FrostParams,
mut secret_share: C::F,
commitments: HashMap<u16, Vec<C::G>>,
// Vec to preserve ownership
mut serialized: HashMap<u16, Vec<u8>>,
mut serialized: HashMap<u16, Re>,
) -> Result<FrostKeys<C>, FrostError> {
validate_map(
&mut serialized,
&(1 ..= params.n()).into_iter().collect::<Vec<_>>(),
(params.i(), secret_share.to_repr().as_ref().to_vec())
)?;
validate_map(&mut serialized, &(1 ..= params.n()).collect::<Vec<_>>(), params.i())?;
// Step 2. Verify each share
let mut shares = HashMap::new();
for (l, share) in serialized {
shares.insert(l, F_from_slice::<C::F>(&share).map_err(|_| FrostError::InvalidShare(l))?);
for (l, share) in serialized.iter_mut() {
shares.insert(*l, C::read_F(share).map_err(|_| FrostError::InvalidShare(*l))?);
}
shares.insert(params.i(), secret_share);
// Calculate the exponent for a given participant and apply it to a series of commitments
// Initially used with the actual commitments to verify the secret share, later used with stripes
@ -282,7 +275,7 @@ pub struct SecretShareMachine<C: Curve> {
params: FrostParams,
context: String,
coefficients: Vec<C::F>,
our_commitments: Vec<u8>,
our_commitments: Vec<C::G>,
}
pub struct KeyMachine<C: Curve> {
@ -303,15 +296,20 @@ impl<C: Curve> KeyGenMachine<C> {
/// channel. If any party submits multiple sets of commitments, they MUST be treated as malicious
pub fn generate_coefficients<R: RngCore + CryptoRng>(
self,
rng: &mut R
rng: &mut R,
) -> (SecretShareMachine<C>, Vec<u8>) {
let (coefficients, serialized) = generate_key_r1::<R, C>(rng, &self.params, &self.context);
let (
coefficients,
our_commitments,
serialized
) = generate_key_r1::<_, C>(rng, &self.params, &self.context);
(
SecretShareMachine {
params: self.params,
context: self.context,
coefficients,
our_commitments: serialized.clone()
our_commitments,
},
serialized,
)
@ -324,12 +322,12 @@ impl<C: Curve> SecretShareMachine<C> {
/// index = Vec index. An empty vector is expected at index 0 to allow for this. An empty vector
/// is also expected at index i which is locally handled. Returns a byte vector representing a
/// secret share for each other participant which should be encrypted before sending
pub fn generate_secret_shares<R: RngCore + CryptoRng>(
pub fn generate_secret_shares<Re: Read, R: RngCore + CryptoRng>(
self,
rng: &mut R,
commitments: HashMap<u16, Vec<u8>>,
commitments: HashMap<u16, Re>,
) -> Result<(KeyMachine<C>, HashMap<u16, Vec<u8>>), FrostError> {
let (secret, commitments, shares) = generate_key_r2::<R, C>(
let (secret, commitments, shares) = generate_key_r2::<_, _, C>(
rng,
&self.params,
&self.context,
@ -348,10 +346,10 @@ impl<C: Curve> KeyMachine<C> {
/// group's public key, while setting a valid secret share inside the machine. > t participants
/// must report completion without issue before this key can be considered usable, yet you should
/// wait for all participants to report as such
pub fn complete<R: RngCore + CryptoRng>(
pub fn complete<Re: Read, R: RngCore + CryptoRng>(
self,
rng: &mut R,
shares: HashMap<u16, Vec<u8>>,
shares: HashMap<u16, Re>,
) -> Result<FrostKeys<C>, FrostError> {
complete_r2(rng, self.params, self.secret, self.commitments, shares)
}

View file

@ -1,5 +1,5 @@
use core::fmt::Debug;
use std::collections::HashMap;
use std::{io::Read, collections::HashMap};
use thiserror::Error;
@ -8,7 +8,7 @@ use group::{ff::{Field, PrimeField}, GroupEncoding};
mod schnorr;
pub mod curve;
use curve::{Curve, F_len, G_len, F_from_slice, G_from_slice};
use curve::Curve;
pub mod key_gen;
pub mod algorithm;
pub mod sign;
@ -54,7 +54,7 @@ impl FrostParams {
pub fn i(&self) -> u16 { self.i }
}
#[derive(Clone, Error, Debug)]
#[derive(Copy, Clone, Error, Debug)]
pub enum FrostError {
#[error("a parameter was 0 (required {0}, participants {1})")]
ZeroParameter(u16, u16),
@ -66,11 +66,11 @@ pub enum FrostError {
InvalidParticipantIndex(u16, u16),
#[error("invalid signing set ({0})")]
InvalidSigningSet(String),
InvalidSigningSet(&'static str),
#[error("invalid participant quantity (expected {0}, got {1})")]
InvalidParticipantQuantity(usize, usize),
#[error("duplicated participant index ({0})")]
DuplicatedIndex(usize),
DuplicatedIndex(u16),
#[error("missing participant {0}")]
MissingParticipant(u16),
#[error("invalid commitment (participant {0})")]
@ -81,7 +81,7 @@ pub enum FrostError {
InvalidShare(u16),
#[error("internal error ({0})")]
InternalError(String),
InternalError(&'static str),
}
// View of keys passable to algorithm implementations
@ -182,7 +182,7 @@ impl<C: Curve> FrostKeys<C> {
pub fn view(&self, included: &[u16]) -> Result<FrostView<C>, FrostError> {
if (included.len() < self.params.t.into()) || (usize::from(self.params.n) < included.len()) {
Err(FrostError::InvalidSigningSet("invalid amount of participants included".to_string()))?;
Err(FrostError::InvalidSigningSet("invalid amount of participants included"))?;
}
let secret_share = self.secret_share * lagrange::<C::F>(self.params.i, &included);
@ -203,12 +203,12 @@ impl<C: Curve> FrostKeys<C> {
}
pub fn serialized_len(n: u16) -> usize {
8 + C::ID.len() + (3 * 2) + F_len::<C>() + G_len::<C>() + (usize::from(n) * G_len::<C>())
8 + C::ID.len() + (3 * 2) + C::F_len() + C::G_len() + (usize::from(n) * C::G_len())
}
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = Vec::with_capacity(FrostKeys::<C>::serialized_len(self.params.n));
serialized.extend(u64::try_from(C::ID.len()).unwrap().to_be_bytes());
serialized.extend(u32::try_from(C::ID.len()).unwrap().to_be_bytes());
serialized.extend(C::ID);
serialized.extend(&self.params.t.to_be_bytes());
serialized.extend(&self.params.n.to_be_bytes());
@ -221,59 +221,51 @@ impl<C: Curve> FrostKeys<C> {
serialized
}
pub fn deserialize(serialized: &[u8]) -> Result<FrostKeys<C>, FrostError> {
let mut start = u64::try_from(C::ID.len()).unwrap().to_be_bytes().to_vec();
start.extend(C::ID);
let mut cursor = start.len();
pub fn deserialize<R: Read>(cursor: &mut R) -> Result<FrostKeys<C>, FrostError> {
{
let missing = FrostError::InternalError("FrostKeys serialization is missing its curve");
let different = FrostError::InternalError("deserializing FrostKeys for another curve");
if serialized.len() < (cursor + 4) {
Err(
FrostError::InternalError(
"FrostKeys serialization is missing its curve/participant quantities".to_string()
)
)?;
}
if &start != &serialized[.. cursor] {
Err(
FrostError::InternalError(
"curve is distinct between serialization and deserialization".to_string()
)
)?;
let mut id_len = [0; 4];
cursor.read_exact(&mut id_len).map_err(|_| missing)?;
if u32::try_from(C::ID.len()).unwrap().to_be_bytes() != id_len {
Err(different)?;
}
let mut id = vec![0; C::ID.len()];
cursor.read_exact(&mut id).map_err(|_| missing)?;
if &id != &C::ID {
Err(different)?;
}
}
let t = u16::from_be_bytes(serialized[cursor .. (cursor + 2)].try_into().unwrap());
cursor += 2;
let (t, n, i) = {
let mut read_u16 = || {
let mut value = [0; 2];
cursor.read_exact(&mut value).map_err(
|_| FrostError::InternalError("missing participant quantities")
)?;
Ok(u16::from_be_bytes(value))
};
(read_u16()?, read_u16()?, read_u16()?)
};
let n = u16::from_be_bytes(serialized[cursor .. (cursor + 2)].try_into().unwrap());
cursor += 2;
if serialized.len() != FrostKeys::<C>::serialized_len(n) {
Err(FrostError::InternalError("incorrect serialization length".to_string()))?;
}
let i = u16::from_be_bytes(serialized[cursor .. (cursor + 2)].try_into().unwrap());
cursor += 2;
let secret_share = F_from_slice::<C::F>(&serialized[cursor .. (cursor + F_len::<C>())])
.map_err(|_| FrostError::InternalError("invalid secret share".to_string()))?;
cursor += F_len::<C>();
let group_key = G_from_slice::<C::G>(&serialized[cursor .. (cursor + G_len::<C>())])
.map_err(|_| FrostError::InternalError("invalid group key".to_string()))?;
cursor += G_len::<C>();
let secret_share = C::read_F(cursor)
.map_err(|_| FrostError::InternalError("invalid secret share"))?;
let group_key = C::read_G(cursor).map_err(|_| FrostError::InternalError("invalid group key"))?;
let mut verification_shares = HashMap::new();
for l in 1 ..= n {
verification_shares.insert(
l,
G_from_slice::<C::G>(&serialized[cursor .. (cursor + G_len::<C>())])
.map_err(|_| FrostError::InternalError("invalid verification share".to_string()))?
C::read_G(cursor).map_err(|_| FrostError::InternalError("invalid verification share"))?
);
cursor += G_len::<C>();
}
Ok(
FrostKeys {
params: FrostParams::new(t, n, i)
.map_err(|_| FrostError::InternalError("invalid parameters".to_string()))?,
.map_err(|_| FrostError::InternalError("invalid parameters"))?,
secret_share,
group_key,
verification_shares,
@ -287,15 +279,20 @@ impl<C: Curve> FrostKeys<C> {
pub(crate) fn validate_map<T>(
map: &mut HashMap<u16, T>,
included: &[u16],
ours: (u16, T)
ours: u16
) -> Result<(), FrostError> {
map.insert(ours.0, ours.1);
if map.len() != included.len() {
Err(FrostError::InvalidParticipantQuantity(included.len(), map.len()))?;
if (map.len() + 1) != included.len() {
Err(FrostError::InvalidParticipantQuantity(included.len(), map.len() + 1))?;
}
for included in included {
if *included == ours {
if map.contains_key(included) {
Err(FrostError::DuplicatedIndex(*included))?;
}
continue;
}
if !map.contains_key(included) {
Err(FrostError::MissingParticipant(*included))?;
}

View file

@ -4,7 +4,7 @@ use group::{ff::{Field, PrimeField}, GroupEncoding};
use multiexp::BatchVerifier;
use crate::{Curve, F_len, G_len};
use crate::Curve;
#[allow(non_snake_case)]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
@ -15,7 +15,7 @@ pub struct SchnorrSignature<C: Curve> {
impl<C: Curve> SchnorrSignature<C> {
pub fn serialize(&self) -> Vec<u8> {
let mut res = Vec::with_capacity(G_len::<C>() + F_len::<C>());
let mut res = Vec::with_capacity(C::G_len() + C::F_len());
res.extend(self.R.to_bytes().as_ref());
res.extend(self.s.to_repr().as_ref());
res

View file

@ -1,18 +1,18 @@
use core::fmt;
use std::{sync::Arc, collections::HashMap};
use std::{io::{Read, Cursor}, sync::Arc, collections::HashMap};
use rand_core::{RngCore, CryptoRng};
use group::{ff::{Field, PrimeField}, Group, GroupEncoding};
use transcript::Transcript;
use group::{ff::{Field, PrimeField}, Group, GroupEncoding};
use multiexp::multiexp_vartime;
use dleq::{Generators, DLEqProof};
use crate::{
curve::{Curve, F_len, G_len, F_from_slice, G_from_slice},
FrostError,
FrostParams, FrostKeys, FrostView,
curve::Curve,
FrostError, FrostParams, FrostKeys, FrostView,
algorithm::Algorithm,
validate_map
};
@ -37,7 +37,7 @@ impl<C: Curve, A: Algorithm<C>> Params<C, A> {
// Included < threshold
if included.len() < usize::from(keys.params.t) {
Err(FrostError::InvalidSigningSet("not enough signers".to_string()))?;
Err(FrostError::InvalidSigningSet("not enough signers"))?;
}
// Invalid index
if included[0] == 0 {
@ -50,12 +50,12 @@ impl<C: Curve, A: Algorithm<C>> Params<C, A> {
// Same signer included multiple times
for i in 0 .. included.len() - 1 {
if included[i] == included[i + 1] {
Err(FrostError::DuplicatedIndex(included[i].into()))?;
Err(FrostError::DuplicatedIndex(included[i]))?;
}
}
// Not included
if !included.contains(&keys.params.i) {
Err(FrostError::InvalidSigningSet("signing despite not being included".to_string()))?;
Err(FrostError::InvalidSigningSet("signing despite not being included"))?;
}
// Out of order arguments to prevent additional cloning
@ -77,7 +77,8 @@ fn nonce_transcript<T: Transcript>() -> T {
pub(crate) struct PreprocessPackage<C: Curve> {
pub(crate) nonces: Vec<[C::F; 2]>,
pub(crate) serialized: Vec<u8>,
pub(crate) commitments: Vec<Vec<[C::G; 2]>>,
pub(crate) addendum: Vec<u8>,
}
// This library unifies the preprocessing step with signing due to security concerns and to provide
@ -85,26 +86,29 @@ pub(crate) struct PreprocessPackage<C: Curve> {
fn preprocess<R: RngCore + CryptoRng, C: Curve, A: Algorithm<C>>(
rng: &mut R,
params: &mut Params<C, A>,
) -> PreprocessPackage<C> {
let mut serialized = Vec::with_capacity(2 * G_len::<C>());
let nonces = params.algorithm.nonces().iter().cloned().map(
) -> (PreprocessPackage<C>, Vec<u8>) {
let mut serialized = Vec::with_capacity(2 * C::G_len());
let (nonces, commitments) = params.algorithm.nonces().iter().cloned().map(
|mut generators| {
let nonces = [
C::random_nonce(params.view().secret_share(), &mut *rng),
C::random_nonce(params.view().secret_share(), &mut *rng)
];
let commit = |generator: C::G| {
let commit = |generator: C::G, buf: &mut Vec<u8>| {
let commitments = [generator * nonces[0], generator * nonces[1]];
[commitments[0].to_bytes().as_ref(), commitments[1].to_bytes().as_ref()].concat().to_vec()
buf.extend(commitments[0].to_bytes().as_ref());
buf.extend(commitments[1].to_bytes().as_ref());
commitments
};
let mut commitments = Vec::with_capacity(generators.len());
let first = generators.remove(0);
serialized.extend(commit(first));
commitments.push(commit(first, &mut serialized));
// Iterate over the rest
for generator in generators.iter() {
serialized.extend(commit(*generator));
commitments.push(commit(*generator, &mut serialized));
// Provide a DLEq to verify these commitments are for the same nonce
// TODO: Provide a single DLEq. See https://github.com/serai-dex/serai/issues/34
for nonce in nonces {
@ -119,130 +123,156 @@ fn preprocess<R: RngCore + CryptoRng, C: Curve, A: Algorithm<C>>(
}
}
nonces
(nonces, commitments)
}
).collect::<Vec<_>>();
).unzip();
serialized.extend(&params.algorithm.preprocess_addendum(rng, &params.view));
let addendum = params.algorithm.preprocess_addendum(rng, &params.view);
serialized.extend(&addendum);
PreprocessPackage { nonces, serialized }
(PreprocessPackage { nonces, commitments, addendum }, serialized)
}
#[allow(non_snake_case)]
fn read_D_E<Re: Read, C: Curve>(cursor: &mut Re, l: u16) -> Result<[C::G; 2], FrostError> {
Ok([
C::read_G(cursor).map_err(|_| FrostError::InvalidCommitment(l))?,
C::read_G(cursor).map_err(|_| FrostError::InvalidCommitment(l))?
])
}
#[allow(non_snake_case)]
struct Package<C: Curve> {
B: HashMap<u16, Vec<Vec<[C::G; 2]>>>,
binding: C::F,
B: HashMap<u16, (Vec<Vec<[C::G; 2]>>, C::F)>,
Rs: Vec<Vec<C::G>>,
share: Vec<u8>
share: C::F,
}
// Has every signer perform the role of the signature aggregator
// Step 1 was already deprecated by performing nonce generation as needed
// Step 2 is simply the broadcast round from step 1
fn sign_with_share<C: Curve, A: Algorithm<C>>(
fn sign_with_share<Re: Read, C: Curve, A: Algorithm<C>>(
params: &mut Params<C, A>,
our_preprocess: PreprocessPackage<C>,
mut commitments: HashMap<u16, Vec<u8>>,
mut commitments: HashMap<u16, Re>,
msg: &[u8],
) -> Result<(Package<C>, Vec<u8>), FrostError> {
let multisig_params = params.multisig_params();
validate_map(
&mut commitments,
&params.view.included,
(multisig_params.i, our_preprocess.serialized)
)?;
validate_map(&mut commitments, &params.view.included, multisig_params.i)?;
{
let transcript = params.algorithm.transcript();
// Domain separate FROST
transcript.domain_separate(b"FROST");
// Include the offset, if one exists
if let Some(offset) = params.keys.offset {
transcript.append_message(b"offset", offset.to_repr().as_ref());
}
params.algorithm.transcript().domain_separate(b"FROST");
}
let nonces = params.algorithm.nonces();
#[allow(non_snake_case)]
let mut B = HashMap::<u16, _>::with_capacity(params.view.included.len());
// Get the binding factor
let nonces = params.algorithm.nonces();
let mut addendums = HashMap::new();
let binding = {
let transcript = params.algorithm.transcript();
{
// Parse the commitments
for l in &params.view.included {
transcript.append_message(b"participant", &l.to_be_bytes());
let serialized = commitments.remove(l).unwrap();
let mut read_commitment = |c, label| {
let commitment = &serialized[c .. (c + G_len::<C>())];
transcript.append_message(label, commitment);
G_from_slice::<C::G>(commitment).map_err(|_| FrostError::InvalidCommitment(*l))
};
{
params.algorithm.transcript().append_message(b"participant", &l.to_be_bytes());
}
// While this doesn't note which nonce/basepoint this is for, those are expected to be
// static. Beyond that, they're committed to in the DLEq proof transcripts, ensuring
// consistency. While this is suboptimal, it maintains IETF compliance, and Algorithm is
// documented accordingly
#[allow(non_snake_case)]
let mut read_D_E = |c| Ok([
read_commitment(c, b"commitment_D")?,
read_commitment(c + G_len::<C>(), b"commitment_E")?
]);
let transcript = |t: &mut A::Transcript, commitments: [C::G; 2]| {
t.append_message(b"commitment_D", commitments[0].to_bytes().as_ref());
t.append_message(b"commitment_E", commitments[1].to_bytes().as_ref());
};
let mut c = 0;
let mut commitments = Vec::with_capacity(nonces.len());
for (n, nonce_generators) in nonces.clone().iter_mut().enumerate() {
commitments.push(Vec::with_capacity(nonce_generators.len()));
let first = nonce_generators.remove(0);
commitments[n].push(read_D_E(c)?);
c += 2 * G_len::<C>();
let mut c = 2 * G_len::<C>();
for generator in nonce_generators {
commitments[n].push(read_D_E(c)?);
c += 2 * G_len::<C>();
for de in 0 .. 2 {
DLEqProof::deserialize(
&mut std::io::Cursor::new(&serialized[c .. (c + (2 * F_len::<C>()))])
).map_err(|_| FrostError::InvalidCommitment(*l))?.verify(
&mut nonce_transcript::<A::Transcript>(),
Generators::new(first, *generator),
(commitments[n][0][de], commitments[n][commitments[n].len() - 1][de])
).map_err(|_| FrostError::InvalidCommitment(*l))?;
c += 2 * F_len::<C>();
if *l == params.keys.params.i {
for nonce_commitments in &our_preprocess.commitments {
for commitments in nonce_commitments {
transcript(params.algorithm.transcript(), *commitments);
}
}
addendums.insert(*l, serialized[c ..].to_vec());
B.insert(*l, (our_preprocess.commitments.clone(), C::F::zero()));
params.algorithm.process_addendum(
&params.view,
*l,
&mut Cursor::new(our_preprocess.addendum.clone())
)?;
} else {
let mut cursor = commitments.remove(l).unwrap();
let mut commitments = Vec::with_capacity(nonces.len());
for (n, nonce_generators) in nonces.clone().iter_mut().enumerate() {
commitments.push(Vec::with_capacity(nonce_generators.len()));
let first = nonce_generators.remove(0);
commitments[n].push(read_D_E::<_, C>(&mut cursor, *l)?);
transcript(params.algorithm.transcript(), commitments[n][0]);
for generator in nonce_generators {
commitments[n].push(read_D_E::<_, C>(&mut cursor, *l)?);
transcript(params.algorithm.transcript(), commitments[n][commitments[n].len() - 1]);
for de in 0 .. 2 {
DLEqProof::deserialize(
&mut cursor
).map_err(|_| FrostError::InvalidCommitment(*l))?.verify(
&mut nonce_transcript::<A::Transcript>(),
Generators::new(first, *generator),
(commitments[n][0][de], commitments[n][commitments[n].len() - 1][de])
).map_err(|_| FrostError::InvalidCommitment(*l))?;
}
}
}
B.insert(*l, (commitments, C::F::zero()));
params.algorithm.process_addendum(&params.view, *l, &mut cursor)?;
}
B.insert(*l, commitments);
}
// Append the message to the transcript
transcript.append_message(b"message", &C::hash_msg(&msg));
// Re-format into the FROST-expected rho transcript
let mut rho_transcript = A::Transcript::new(b"FROST_rho");
rho_transcript.append_message(b"message", &C::hash_msg(&msg));
// This won't just be the commitments, yet the full existing transcript if used in an extended
// protocol
rho_transcript.append_message(
b"commitments",
&C::hash_msg(params.algorithm.transcript().challenge(b"commitments").as_ref())
);
// Include the offset, if one exists
// While this isn't part of the FROST-expected rho transcript, the offset being here coincides
// with another specification
if let Some(offset) = params.keys.offset {
rho_transcript.append_message(b"offset", offset.to_repr().as_ref());
}
// Calculate the binding factor
C::hash_binding_factor(transcript.challenge(b"binding").as_ref())
};
// Generate the per-signer binding factors
for (l, commitments) in B.iter_mut() {
let mut rho_transcript = rho_transcript.clone();
rho_transcript.append_message(b"participant", &l.to_be_bytes());
commitments.1 = C::hash_binding_factor(rho_transcript.challenge(b"rho").as_ref());
}
// Process the addendums
for l in &params.view.included {
params.algorithm.process_addendum(&params.view, *l, &addendums[l])?;
// Merge the rho transcript back into the global one to ensure its advanced while committing to
// everything
params.algorithm.transcript().append_message(
b"rho_transcript",
rho_transcript.challenge(b"merge").as_ref()
);
}
#[allow(non_snake_case)]
let mut Rs = Vec::with_capacity(nonces.len());
for n in 0 .. nonces.len() {
Rs.push(vec![C::G::identity(); nonces[n].len()]);
#[allow(non_snake_case)]
for g in 0 .. nonces[n].len() {
Rs[n][g] = {
B.values().map(|B| B[n][g][0]).sum::<C::G>() +
(B.values().map(|B| B[n][g][1]).sum::<C::G>() * binding)
};
#[allow(non_snake_case)]
let mut D = C::G::identity();
let mut statements = Vec::with_capacity(B.len());
#[allow(non_snake_case)]
for (B, binding) in B.values() {
D += B[n][g][0];
statements.push((*binding, B[n][g][1]));
}
Rs[n][g] = D + multiexp_vartime(&statements);
}
}
@ -250,26 +280,29 @@ fn sign_with_share<C: Curve, A: Algorithm<C>>(
&params.view,
&Rs,
&our_preprocess.nonces.iter().map(
|nonces| nonces[0] + (nonces[1] * binding)
|nonces| nonces[0] + (nonces[1] * B[&params.keys.params.i()].1)
).collect::<Vec<_>>(),
msg
).to_repr().as_ref().to_vec();
Ok((Package { B, binding, Rs, share: share.clone() }, share))
);
Ok((Package { B, Rs, share }, share.to_repr().as_ref().to_vec()))
}
fn complete<C: Curve, A: Algorithm<C>>(
fn complete<Re: Read, C: Curve, A: Algorithm<C>>(
sign_params: &Params<C, A>,
sign: Package<C>,
mut shares: HashMap<u16, Vec<u8>>,
mut shares: HashMap<u16, Re>,
) -> Result<A::Signature, FrostError> {
let params = sign_params.multisig_params();
validate_map(&mut shares, &sign_params.view.included, (params.i(), sign.share))?;
validate_map(&mut shares, &sign_params.view.included, params.i)?;
let mut responses = HashMap::new();
let mut sum = C::F::zero();
for l in &sign_params.view.included {
let part = F_from_slice::<C::F>(&shares[l]).map_err(|_| FrostError::InvalidShare(*l))?;
let part = if *l == params.i {
sign.share
} else {
C::read_F(shares.get_mut(l).unwrap()).map_err(|_| FrostError::InvalidShare(*l))?
};
sum += part;
responses.insert(*l, part);
}
@ -288,9 +321,9 @@ fn complete<C: Curve, A: Algorithm<C>>(
if !sign_params.algorithm.verify_share(
*l,
sign_params.view.verification_share(*l),
&sign.B[l].iter().map(
&sign.B[l].0.iter().map(
|nonces| nonces.iter().map(
|commitments| commitments[0] + (commitments[1] * sign.binding)
|commitments| commitments[0] + (commitments[1] * sign.B[l].1)
).collect()
).collect::<Vec<_>>(),
responses[l]
@ -301,9 +334,7 @@ fn complete<C: Curve, A: Algorithm<C>>(
// If everyone has a valid share and there were enough participants, this should've worked
Err(
FrostError::InternalError(
"everyone had a valid share yet the signature was still invalid".to_string()
)
FrostError::InternalError("everyone had a valid share yet the signature was still invalid")
)
}
@ -328,9 +359,9 @@ pub trait SignMachine<S> {
/// index = Vec index. None is expected at index 0 to allow for this. None is also expected at
/// index i which is locally handled. Returns a byte vector representing a share of the signature
/// for every other participant to receive, over an authenticated channel
fn sign(
fn sign<Re: Read>(
self,
commitments: HashMap<u16, Vec<u8>>,
commitments: HashMap<u16, Re>,
msg: &[u8],
) -> Result<(Self::SignatureMachine, Vec<u8>), FrostError>;
}
@ -340,7 +371,7 @@ pub trait SignatureMachine<S> {
/// Takes in everyone elses' shares submitted to us as a Vec, expecting participant index =
/// Vec index with None at index 0 and index i. Returns a byte vector representing the serialized
/// signature
fn complete(self, shares: HashMap<u16, Vec<u8>>) -> Result<S, FrostError>;
fn complete<Re: Read>(self, shares: HashMap<u16, Re>) -> Result<S, FrostError>;
}
/// State machine which manages signing for an arbitrary signature algorithm
@ -371,9 +402,8 @@ impl<C: Curve, A: Algorithm<C>> AlgorithmMachine<C, A> {
pub(crate) fn unsafe_override_preprocess(
self,
preprocess: PreprocessPackage<C>
) -> (AlgorithmSignMachine<C, A>, Vec<u8>) {
let serialized = preprocess.serialized.clone();
(AlgorithmSignMachine { params: self.params, preprocess }, serialized)
) -> AlgorithmSignMachine<C, A> {
AlgorithmSignMachine { params: self.params, preprocess }
}
}
@ -386,8 +416,7 @@ impl<C: Curve, A: Algorithm<C>> PreprocessMachine for AlgorithmMachine<C, A> {
rng: &mut R
) -> (Self::SignMachine, Vec<u8>) {
let mut params = self.params;
let preprocess = preprocess::<R, C, A>(rng, &mut params);
let serialized = preprocess.serialized.clone();
let (preprocess, serialized) = preprocess::<R, C, A>(rng, &mut params);
(AlgorithmSignMachine { params, preprocess }, serialized)
}
}
@ -395,9 +424,9 @@ impl<C: Curve, A: Algorithm<C>> PreprocessMachine for AlgorithmMachine<C, A> {
impl<C: Curve, A: Algorithm<C>> SignMachine<A::Signature> for AlgorithmSignMachine<C, A> {
type SignatureMachine = AlgorithmSignatureMachine<C, A>;
fn sign(
fn sign<Re: Read>(
self,
commitments: HashMap<u16, Vec<u8>>,
commitments: HashMap<u16, Re>,
msg: &[u8]
) -> Result<(Self::SignatureMachine, Vec<u8>), FrostError> {
let mut params = self.params;
@ -410,7 +439,7 @@ impl<
C: Curve,
A: Algorithm<C>
> SignatureMachine<A::Signature> for AlgorithmSignatureMachine<C, A> {
fn complete(self, shares: HashMap<u16, Vec<u8>>) -> Result<A::Signature, FrostError> {
fn complete<Re: Read>(self, shares: HashMap<u16, Re>) -> Result<A::Signature, FrostError> {
complete(&self.params, self.sign, shares)
}
}

View file

@ -1,3 +1,5 @@
use std::io::Cursor;
use rand_core::{RngCore, CryptoRng};
use group::{ff::Field, Group};
@ -13,7 +15,7 @@ fn key_generation<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
// Test serialization of generated keys
fn keys_serialization<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
for (_, keys) in key_gen::<_, C>(rng) {
assert_eq!(&FrostKeys::<C>::deserialize(&keys.serialize()).unwrap(), &*keys);
assert_eq!(&FrostKeys::<C>::deserialize(&mut Cursor::new(keys.serialize())).unwrap(), &*keys);
}
}

View file

@ -21,20 +21,20 @@ fn ristretto_vectors() {
included: &[1, 3],
nonces: &[
[
"b358743151e33d84bf00c12f71808f4103957c3e2cabab7b895c436b5e70f90c",
"7bd112153b9ae1ab9b31f5e78f61f5c4ca9ee67b7ea6d1181799c409d14c350c"
"eb0dc12ae7b746d36e3f2de46ce3833a05b9d4af5434eeb8cafaefda76906d00",
"491e91aa9df514ef598d5e0c7c5cdd088fbde4965b96069d546c0f04f1822b03"
],
[
"22acad88478e0d0373a991092a322ebd1b9a2dad90451a976d0db3215426af0e",
"9155e3d7bcf7cd468b980c7e20b2c77cbdfbe33a1dcae031fd8bc6b1403f4b04"
"abd12b8e6f255ee1e540eab029003a6e956567617720f61115f0941615892209",
"218e22625f93f262f025bd2d13c46ba722aa29fe585ceed66ff442d98fe4e509"
]
],
sig_shares: &[
"ff801b4e0839faa67f16dee4127b9f7fbcf5fd007900257b0e2bbc02cbe5e709",
"afdf5481023c855bf3411a5c8a5fafa92357296a078c3b80dc168f294cb4f504"
"efae3a83437fa8cd96194aacc56a7eb841630c280da99e7764a81d1340323306",
"96ddc4582e45eabce46f07b9e9375f8b49d35d1510fd34ac02b1e79d6100a602"
],
sig: "deae61af10e8ee48ba492573592fba547f5debeff6bd6e2024e8673584746f5e".to_owned() +
"ae6070cf0a757f027358f8409dda4e29e04c276b808c60fbea414b2c179add0e"
sig: "7ec584cef9a383afb43883b73bcaa6313afe878bd5fe75a608311b866a76ec67".to_owned() +
"858cffdb71c4928a7b895165afa2dd438b366a3d1da6d323675905b1a132d908"
}
);
}
@ -58,20 +58,20 @@ fn ed25519_vectors() {
included: &[1, 3],
nonces: &[
[
"8c76af04340e83bb5fc427c117d38347fc8ef86d5397feea9aa6412d96c05b0a",
"14a37ddbeae8d9e9687369e5eb3c6d54f03dc19d76bb54fb5425131bc37a600b"
"d9aad97e1a1127bb87702ce8d81d8c07c7cbca89e784868d8e3876ff6b459700",
"5063be2774520d08a5ccd7f1213fb1179a5fa292bf13bc91cb28e7bd4d4a690c"
],
[
"5ca39ebab6874f5e7b5089f3521819a2aa1e2cf738bae6974ee80555de2ef70e",
"0afe3650c4815ff37becd3c6948066e906e929ea9b8f546c74e10002dbcc150c"
"86961f3a429ac0c5696f49e6d796817ff653f83c07f34e9e1f4d4c8c515b7900",
"72225ec11c1315d9f1ea0e78b1160ed95800fadd0191d23fd2f2c90ac96cb307"
]
],
sig_shares: &[
"4369474a398aa10357b60d683da91ea6a767dcf53fd541a8ed6b4d780827ea0a",
"32fcc690d926075e45d2dfb746bab71447943cddbefe80d122c39174aa2e1004"
"caae171b83bff0c2c6f56a1276892918ba228146f6344b85d2ec6efeb6f16d0d",
"ea6fdbf61683cf5f1f742e1b91583f0f667f0369efd2e33399b96d5a3ff0300d"
],
sig: "2b8d9c6995333c5990e3a3dd6568785539d3322f7f0376452487ea35cfda587b".to_owned() +
"75650edb12b1a8619c88ed1f8463d6baeefb18d3fed3c279102fdfecb255fa0e"
sig: "5da10008c13c04dd72328ba8e0f72b63cad43c3bf4b7eaada1c78225afbd977e".to_owned() +
"c74afdb47fdfadca0fcda18a28e8891220a284afe5072fb96ba6dc58f6e19e0a"
}
);
}

View file

@ -1,20 +1,49 @@
use rand::rngs::OsRng;
#[cfg(feature = "secp256k1")]
use crate::tests::{curve::test_curve, schnorr::test_schnorr};
#[cfg(feature = "secp256k1")]
use crate::curve::Secp256k1;
#[cfg(feature = "p256")]
#[cfg(any(feature = "secp256k1", feature = "p256"))]
use crate::tests::vectors::{Vectors, test_with_vectors};
#[cfg(feature = "secp256k1")]
use crate::curve::{Secp256k1, NonIetfSecp256k1Hram};
#[cfg(feature = "p256")]
use crate::curve::{P256, IetfP256Hram};
#[cfg(feature = "secp256k1")]
#[test]
fn secp256k1_non_ietf() {
test_curve::<_, Secp256k1>(&mut OsRng);
test_schnorr::<_, Secp256k1>(&mut OsRng);
test_with_vectors::<_, Secp256k1, NonIetfSecp256k1Hram>(
&mut OsRng,
Vectors {
threshold: 2,
shares: &[
"08f89ffe80ac94dcb920c26f3f46140bfc7f95b493f8310f5fc1ea2b01f4254c",
"04f0feac2edcedc6ce1253b7fab8c86b856a797f44d83d82a385554e6e401984",
"00e95d59dd0d46b0e303e500b62b7ccb0e555d49f5b849f5e748c071da8c0dbc"
],
group_secret: "0d004150d27c3bf2a42f312683d35fac7394b1e9e318249c1bfe7f0795a83114",
group_key: "02f37c34b66ced1fb51c34a90bdae006901f10625cc06c4f64663b0eae87d87b4f",
msg: "74657374",
included: &[1, 3],
nonces: &[
[
"31c3c1b76b76664569859b9251fbabed9d4d432c6f5aaa03ed41f9c231935798",
"206f4ffaeb602ccb57cbe50e146ac690e6d7317d4b93377061d9d1b4caf78a26"
],
[
"0d3945bc1553676a5dd910cb4f14437d99ed421516b2617357b984820fdca520",
"635e0fd90caaf40b5e986d0ee0f58778e4d88731bc6ac70350ef702ffe20a21b"
]
],
sig_shares: &[
"18b71e284c5d008896ed8847b234ec829eda376d6208838ee7faf2ce21b154c1",
"a452a49c8116124d0a283f3589a96b704894b43246e47e59d376353bcc638311"
],
sig: "03dafb28ee7ad033fd15ed470d07156617260d74a9d76a15d371d7b613d2b111e".to_owned() +
"7bd09c2c4cd7312d5a115c77d3bde57f2e76eeb9fa8ed01e8bb712809ee14d7d2"
}
);
}
#[cfg(feature = "p256")]
@ -36,20 +65,20 @@ fn p256_vectors() {
included: &[1, 3],
nonces: &[
[
"081617b24375e069b39f649d4c4ce2fba6e38b73e7c16759de0b6079a22c4c7e",
"4de5fb77d99f03a2491a83a6a4cb91ca3c82a3f34ce94cec939174f47c9f95dd"
"33a519cf070a166f9ef41a798d03423743f3e7d0b0efd5d0d963773c4c53205e",
"307d208d0c5728f323ae374f1ebd7f14a1a49b77d9d4bc1eab222218a17765ff"
],
[
"d186ea92593f83ea83181b184d41aa93493301ac2bc5b4b1767e94d2db943e38",
"486e2ee25a3fbc8e6399d748b077a2755fde99fa85cc24fa647ea4ebf5811a15"
"a614eadb972dc37b88aeceb6e899903f3104742d13f379a0e014541decbea4a4",
"e509791018504c5bb87edaf0f44761cc840888507c4cd80237971d78e65f70f2"
]
],
sig_shares: &[
"9e4d8865faf8c7b3193a3b35eda3d9e12118447114b1e7d5b4809ea28067f8a9",
"b7d094eab6305ae74daeed1acd31abba9ab81f638d38b72c132cb25a5dfae1fc"
"61e8b9c474df2e66ad19fd80a6e6cec1c6fe43c0a1cffd2d1c28299e93e1bbdb",
"9651d355ca1dea2557ba1f73e38a9f4ff1f1afc565323ef27f88a9d14df8370e"
],
sig: "0342c14c77f9d4ef9b8bd64fb0d7bbfdb9f8216a44e5f7bbe6ac0f3ed5e1a57367".to_owned() +
"561e1d51b129229966e92850bad5859bfee96926fad3007cd3f38639e1ffb554"
sig: "02dfba781e17b830229ae4ed22ebe402873683d9dfd945d01762217fb3172c2a7".to_owned() +
"1f83a8d1a3efd188c04d41cf48a716e11b8eff38607023c1f9bb0d36fe1d9f2e9"
}
);
}

View file

@ -1,4 +1,4 @@
use std::{sync::Arc, collections::HashMap};
use std::{io::Cursor, sync::Arc, collections::HashMap};
use rand_core::{RngCore, CryptoRng};
@ -46,15 +46,13 @@ pub fn key_gen<R: RngCore + CryptoRng, C: Curve>(
);
let (machine, these_commitments) = machine.generate_coefficients(rng);
machines.insert(i, machine);
commitments.insert(i, these_commitments);
commitments.insert(i, Cursor::new(these_commitments));
}
let mut secret_shares = HashMap::new();
let mut machines = machines.drain().map(|(l, machine)| {
let (machine, shares) = machine.generate_secret_shares(
rng,
// clone_without isn't necessary, as this machine's own data will be inserted without
// conflict, yet using it ensures the machine's own data is actually inserted as expected
clone_without(&commitments, &l)
).unwrap();
secret_shares.insert(l, shares);
@ -69,7 +67,7 @@ pub fn key_gen<R: RngCore + CryptoRng, C: Curve>(
if i == *l {
continue;
}
our_secret_shares.insert(*l, shares[&i].clone());
our_secret_shares.insert(*l, Cursor::new(shares[&i].clone()));
}
let these_keys = machine.complete(rng, our_secret_shares).unwrap();
@ -140,14 +138,14 @@ pub fn sign<R: RngCore + CryptoRng, M: PreprocessMachine>(
let mut commitments = HashMap::new();
let mut machines = machines.drain().map(|(i, machine)| {
let (machine, preprocess) = machine.preprocess(rng);
commitments.insert(i, preprocess);
commitments.insert(i, Cursor::new(preprocess));
(i, machine)
}).collect::<HashMap<_, _>>();
let mut shares = HashMap::new();
let mut machines = machines.drain().map(|(i, machine)| {
let (machine, share) = machine.sign(clone_without(&commitments, &i), msg).unwrap();
shares.insert(i, share);
shares.insert(i, Cursor::new(share));
(i, machine)
}).collect::<HashMap<_, _>>();

View file

@ -1,14 +1,14 @@
use std::{sync::Arc, collections::HashMap};
use std::{io::Cursor, sync::Arc, collections::HashMap};
use rand_core::{RngCore, CryptoRng};
use group::{ff::PrimeField, GroupEncoding};
use crate::{
curve::{Curve, F_from_slice, G_from_slice}, FrostKeys,
curve::Curve, FrostKeys,
algorithm::{Schnorr, Hram},
sign::{PreprocessPackage, SignMachine, SignatureMachine, AlgorithmMachine},
tests::{curve::test_curve, schnorr::test_schnorr, recover}
tests::{clone_without, curve::test_curve, schnorr::test_schnorr, recover}
};
pub struct Vectors {
@ -27,7 +27,7 @@ pub struct Vectors {
// Load these vectors into FrostKeys using a custom serialization it'll deserialize
fn vectors_to_multisig_keys<C: Curve>(vectors: &Vectors) -> HashMap<u16, FrostKeys<C>> {
let shares = vectors.shares.iter().map(
|secret| F_from_slice::<C::F>(&hex::decode(secret).unwrap()).unwrap()
|secret| C::read_F(&mut Cursor::new(hex::decode(secret).unwrap())).unwrap()
).collect::<Vec<_>>();
let verification_shares = shares.iter().map(
|secret| C::GENERATOR * secret
@ -36,7 +36,7 @@ fn vectors_to_multisig_keys<C: Curve>(vectors: &Vectors) -> HashMap<u16, FrostKe
let mut keys = HashMap::new();
for i in 1 ..= u16::try_from(shares.len()).unwrap() {
let mut serialized = vec![];
serialized.extend(u64::try_from(C::ID.len()).unwrap().to_be_bytes());
serialized.extend(u32::try_from(C::ID.len()).unwrap().to_be_bytes());
serialized.extend(C::ID);
serialized.extend(vectors.threshold.to_be_bytes());
serialized.extend(u16::try_from(shares.len()).unwrap().to_be_bytes());
@ -47,7 +47,7 @@ fn vectors_to_multisig_keys<C: Curve>(vectors: &Vectors) -> HashMap<u16, FrostKe
serialized.extend(share.to_bytes().as_ref());
}
let these_keys = FrostKeys::<C>::deserialize(&serialized).unwrap();
let these_keys = FrostKeys::<C>::deserialize(&mut Cursor::new(serialized)).unwrap();
assert_eq!(these_keys.params().t(), vectors.threshold);
assert_eq!(usize::from(these_keys.params().n()), shares.len());
assert_eq!(these_keys.params().i(), i);
@ -70,14 +70,14 @@ pub fn test_with_vectors<
// Test against the vectors
let keys = vectors_to_multisig_keys::<C>(&vectors);
let group_key = G_from_slice::<C::G>(&hex::decode(vectors.group_key).unwrap()).unwrap();
let group_key = C::read_G(&mut Cursor::new(hex::decode(vectors.group_key).unwrap())).unwrap();
assert_eq!(
C::GENERATOR * F_from_slice::<C::F>(&hex::decode(vectors.group_secret).unwrap()).unwrap(),
C::GENERATOR * C::read_F(&mut Cursor::new(hex::decode(vectors.group_secret).unwrap())).unwrap(),
group_key
);
assert_eq!(
recover(&keys),
F_from_slice::<C::F>(&hex::decode(vectors.group_secret).unwrap()).unwrap()
C::read_F(&mut Cursor::new(hex::decode(vectors.group_secret).unwrap())).unwrap()
);
let mut machines = vec![];
@ -96,19 +96,28 @@ pub fn test_with_vectors<
let mut c = 0;
let mut machines = machines.drain(..).map(|(i, machine)| {
let nonces = [
F_from_slice::<C::F>(&hex::decode(vectors.nonces[c][0]).unwrap()).unwrap(),
F_from_slice::<C::F>(&hex::decode(vectors.nonces[c][1]).unwrap()).unwrap()
C::read_F(&mut Cursor::new(hex::decode(vectors.nonces[c][0]).unwrap())).unwrap(),
C::read_F(&mut Cursor::new(hex::decode(vectors.nonces[c][1]).unwrap())).unwrap()
];
c += 1;
let mut serialized = (C::GENERATOR * nonces[0]).to_bytes().as_ref().to_vec();
serialized.extend((C::GENERATOR * nonces[1]).to_bytes().as_ref());
let (machine, serialized) = machine.unsafe_override_preprocess(
PreprocessPackage { nonces: vec![nonces], serialized: serialized.clone() }
let these_commitments = vec![[C::GENERATOR * nonces[0], C::GENERATOR * nonces[1]]];
let machine = machine.unsafe_override_preprocess(
PreprocessPackage {
nonces: vec![nonces],
commitments: vec![these_commitments.clone()],
addendum: vec![]
}
);
commitments.insert(i, serialized);
commitments.insert(
i,
Cursor::new(
[
these_commitments[0][0].to_bytes().as_ref(),
these_commitments[0][1].to_bytes().as_ref()
].concat().to_vec()
)
);
(i, machine)
}).collect::<Vec<_>>();
@ -116,19 +125,19 @@ pub fn test_with_vectors<
c = 0;
let mut machines = machines.drain(..).map(|(i, machine)| {
let (machine, share) = machine.sign(
commitments.clone(),
clone_without(&commitments, &i),
&hex::decode(vectors.msg).unwrap()
).unwrap();
assert_eq!(share, hex::decode(vectors.sig_shares[c]).unwrap());
c += 1;
shares.insert(i, share);
shares.insert(i, Cursor::new(share));
(i, machine)
}).collect::<HashMap<_, _>>();
for (_, machine) in machines.drain() {
let sig = machine.complete(shares.clone()).unwrap();
for (i, machine) in machines.drain() {
let sig = machine.complete(clone_without(&shares, &i)).unwrap();
let mut serialized = sig.R.to_bytes().as_ref().to_vec();
serialized.extend(sig.s.to_repr().as_ref());
assert_eq!(hex::encode(serialized), vectors.sig);

View file

@ -1,6 +1,6 @@
[package]
name = "multiexp"
version = "0.1.0"
version = "0.2.0"
description = "Multiexponentation algorithms for ff/group"
license = "MIT"
repository = "https://github.com/serai-dex/serai"

View file

@ -1,6 +1,6 @@
[package]
name = "flexible-transcript"
version = "0.1.2"
version = "0.1.3"
description = "A simple transcript trait definition, along with viable options"
license = "MIT"
repository = "https://github.com/serai-dex/serai"

View file

@ -3,7 +3,9 @@ name = "serai-processor"
version = "0.1.0"
description = "Multichain processor premised on canonicity to reach distributed consensus automatically"
license = "AGPL-3.0-only"
repository = "https://github.com/serai-dex/processor"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = []
edition = "2021"
publish = false

View file

@ -1,4 +1,4 @@
use std::{marker::Send, collections::HashMap};
use std::{marker::Send, io::Cursor, collections::HashMap};
use async_trait::async_trait;
use thiserror::Error;
@ -17,7 +17,7 @@ pub enum NetworkError {}
#[async_trait]
pub trait Network: Send {
async fn round(&mut self, data: Vec<u8>) -> Result<HashMap<u16, Vec<u8>>, NetworkError>;
async fn round(&mut self, data: Vec<u8>) -> Result<HashMap<u16, Cursor<Vec<u8>>>, NetworkError>;
}
#[derive(Clone, Error, Debug)]

View file

@ -1,4 +1,4 @@
use std::{sync::{Arc, RwLock}, collections::HashMap};
use std::{io::Cursor, sync::{Arc, RwLock}, collections::HashMap};
use async_trait::async_trait;
@ -11,7 +11,7 @@ struct LocalNetwork {
i: u16,
size: u16,
round: usize,
rounds: Arc<RwLock<Vec<HashMap<u16, Vec<u8>>>>>
rounds: Arc<RwLock<Vec<HashMap<u16, Cursor<Vec<u8>>>>>>
}
impl LocalNetwork {
@ -27,13 +27,13 @@ impl LocalNetwork {
#[async_trait]
impl Network for LocalNetwork {
async fn round(&mut self, data: Vec<u8>) -> Result<HashMap<u16, Vec<u8>>, NetworkError> {
async fn round(&mut self, data: Vec<u8>) -> Result<HashMap<u16, Cursor<Vec<u8>>>, NetworkError> {
{
let mut rounds = self.rounds.write().unwrap();
if rounds.len() == self.round {
rounds.push(HashMap::new());
}
rounds[self.round].insert(self.i, data);
rounds[self.round].insert(self.i, Cursor::new(data));
}
while {
@ -43,7 +43,8 @@ impl Network for LocalNetwork {
tokio::task::yield_now().await;
}
let res = self.rounds.try_read().unwrap()[self.round].clone();
let mut res = self.rounds.try_read().unwrap()[self.round].clone();
res.remove(&self.i);
self.round += 1;
Ok(res)
}