Publish ExternablBlock/SubstrateBlock, delay *Preprocess until ID acknowledged

Adds a channel for the Tributary scanner to communicate when an ID has been
acknowledged.
This commit is contained in:
Luke Parker 2023-05-08 22:20:51 -04:00
parent a7f2740dfb
commit 964fdee175
No known key found for this signature in database
7 changed files with 252 additions and 77 deletions

View file

@ -41,4 +41,19 @@ impl<'a, D: Db> MainDb<'a, D> {
txn.put(key, existing_bytes); txn.put(key, existing_bytes);
txn.commit(); txn.commit();
} }
fn first_preprocess_key(id: [u8; 32]) -> Vec<u8> {
Self::main_key(b"first_preprocess", id)
}
pub fn save_first_preprocess(txn: &mut D::Transaction<'_>, id: [u8; 32], preprocess: Vec<u8>) {
let key = Self::first_preprocess_key(id);
if let Some(existing) = txn.get(&key) {
assert_eq!(existing, preprocess, "saved a distinct first preprocess");
return;
}
txn.put(key, preprocess);
}
pub fn first_preprocess<G: Get>(getter: &G, id: [u8; 32]) -> Vec<u8> {
getter.get(Self::first_preprocess_key(id)).expect("asked for first preprocess we never saved")
}
} }

View file

@ -14,15 +14,25 @@ use rand_core::OsRng;
use ciphersuite::{group::ff::Field, Ciphersuite, Ristretto}; use ciphersuite::{group::ff::Field, Ciphersuite, Ristretto};
use serai_db::{Db, MemDb}; use serai_db::{DbTxn, Db, MemDb};
use serai_client::Serai; use serai_client::Serai;
use tokio::{sync::RwLock, time::sleep}; use tokio::{
sync::{
mpsc::{self, UnboundedSender},
RwLock,
},
time::sleep,
};
use ::tributary::{ReadWrite, Block, Tributary, TributaryReader}; use ::tributary::{
ReadWrite, ProvidedError, TransactionKind, Transaction as TransactionTrait, Block, Tributary,
TributaryReader,
};
mod tributary; mod tributary;
use crate::tributary::{TributarySpec, SignData, Transaction}; #[rustfmt::skip]
use crate::tributary::{TributarySpec, SignData, Transaction, TributaryDb, scanner::RecognizedIdType};
mod db; mod db;
use db::MainDb; use db::MainDb;
@ -125,6 +135,7 @@ pub async fn scan_substrate<D: Db, Pro: Processor>(
pub async fn scan_tributaries<D: Db, Pro: Processor, P: P2p>( pub async fn scan_tributaries<D: Db, Pro: Processor, P: P2p>(
raw_db: D, raw_db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>, key: Zeroizing<<Ristretto as Ciphersuite>::F>,
recognized_id_send: UnboundedSender<([u8; 32], RecognizedIdType, [u8; 32])>,
p2p: P, p2p: P,
processor: Pro, processor: Pro,
tributaries: Arc<RwLock<HashMap<[u8; 32], ActiveTributary<D, P>>>>, tributaries: Arc<RwLock<HashMap<[u8; 32], ActiveTributary<D, P>>>>,
@ -162,6 +173,7 @@ pub async fn scan_tributaries<D: Db, Pro: Processor, P: P2p>(
tributary::scanner::handle_new_blocks::<_, _>( tributary::scanner::handle_new_blocks::<_, _>(
&mut tributary_db, &mut tributary_db,
&key, &key,
&recognized_id_send,
&processor, &processor,
spec, spec,
reader, reader,
@ -223,19 +235,18 @@ pub async fn handle_p2p<D: Db, P: P2p>(
} }
} }
// TODO2: Rate limit this // TODO2: Rate limit this per validator
P2pMessageKind::Heartbeat(genesis) => { P2pMessageKind::Heartbeat(genesis) => {
let tributaries = tributaries.read().await;
let Some(tributary) = tributaries.get(&genesis) else {
log::debug!("received heartbeat message for unknown network");
continue;
};
if msg.msg.len() != 32 { if msg.msg.len() != 32 {
log::error!("validator sent invalid heartbeat"); log::error!("validator sent invalid heartbeat");
continue; continue;
} }
let tributaries = tributaries.read().await;
let Some(tributary) = tributaries.get(&genesis) else {
log::debug!("received heartbeat message for unknown network");
continue;
};
let tributary_read = tributary.tributary.read().await; let tributary_read = tributary.tributary.read().await;
/* /*
@ -312,8 +323,30 @@ pub async fn handle_p2p<D: Db, P: P2p>(
} }
} }
pub async fn publish_transaction<D: Db, P: P2p>(
tributary: &Tributary<D, Transaction, P>,
tx: Transaction,
) {
if let TransactionKind::Signed(signed) = tx.kind() {
if tributary
.next_nonce(signed.signer)
.await
.expect("we don't have a nonce, meaning we aren't a participant on this tributary") >
signed.nonce
{
log::warn!("we've already published this transaction. this should only appear on reboot");
} else {
// We should've created a valid transaction
assert!(tributary.add_transaction(tx).await, "created an invalid transaction");
}
} else {
panic!("non-signed transaction passed to publish_transaction");
}
}
#[allow(clippy::type_complexity)] #[allow(clippy::type_complexity)]
pub async fn handle_processors<D: Db, Pro: Processor, P: P2p>( pub async fn handle_processors<D: Db, Pro: Processor, P: P2p>(
mut db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>, key: Zeroizing<<Ristretto as Ciphersuite>::F>,
mut processor: Pro, mut processor: Pro,
tributaries: Arc<RwLock<HashMap<[u8; 32], ActiveTributary<D, P>>>>, tributaries: Arc<RwLock<HashMap<[u8; 32], ActiveTributary<D, P>>>>,
@ -339,6 +372,13 @@ pub async fn handle_processors<D: Db, Pro: Processor, P: P2p>(
}, },
ProcessorMessage::Sign(msg) => match msg { ProcessorMessage::Sign(msg) => match msg {
sign::ProcessorMessage::Preprocess { id, preprocess } => { sign::ProcessorMessage::Preprocess { id, preprocess } => {
if id.attempt == 0 {
let mut txn = db.txn();
MainDb::<D>::save_first_preprocess(&mut txn, id.id, preprocess);
txn.commit();
None
} else {
Some(Transaction::SignPreprocess(SignData { Some(Transaction::SignPreprocess(SignData {
plan: id.id, plan: id.id,
attempt: id.attempt, attempt: id.attempt,
@ -346,6 +386,7 @@ pub async fn handle_processors<D: Db, Pro: Processor, P: P2p>(
signed: Transaction::empty_signed(), signed: Transaction::empty_signed(),
})) }))
} }
}
sign::ProcessorMessage::Share { id, share } => Some(Transaction::SignShare(SignData { sign::ProcessorMessage::Share { id, share } => Some(Transaction::SignShare(SignData {
plan: id.id, plan: id.id,
attempt: id.attempt, attempt: id.attempt,
@ -356,9 +397,29 @@ pub async fn handle_processors<D: Db, Pro: Processor, P: P2p>(
sign::ProcessorMessage::Completed { .. } => todo!(), sign::ProcessorMessage::Completed { .. } => todo!(),
}, },
ProcessorMessage::Coordinator(msg) => match msg { ProcessorMessage::Coordinator(msg) => match msg {
// TODO coordinator::ProcessorMessage::SubstrateBlockAck { network: _, block, plans } => {
coordinator::ProcessorMessage::SubstrateBlockAck { .. } => todo!(), // TODO2: Check this network aligns with this processor
// Safe to use its own txn since this is static and just needs to be written before we
// provide SubstrateBlock
let mut txn = db.txn();
TributaryDb::<D>::set_plan_ids(&mut txn, genesis, block, &plans);
txn.commit();
Some(Transaction::SubstrateBlock(block))
}
coordinator::ProcessorMessage::BatchPreprocess { id, preprocess } => { coordinator::ProcessorMessage::BatchPreprocess { id, preprocess } => {
// If this is the first attempt instance, synchronize around the block first
if id.attempt == 0 {
// Save the preprocess to disk so we can publish it later
// This is fine to use its own TX since it's static and just needs to be written
// before this message finishes it handling (or with this message's finished handling)
let mut txn = db.txn();
MainDb::<D>::save_first_preprocess(&mut txn, id.id, preprocess);
txn.commit();
Some(Transaction::ExternalBlock(id.id))
} else {
Some(Transaction::BatchPreprocess(SignData { Some(Transaction::BatchPreprocess(SignData {
plan: id.id, plan: id.id,
attempt: id.attempt, attempt: id.attempt,
@ -366,6 +427,7 @@ pub async fn handle_processors<D: Db, Pro: Processor, P: P2p>(
signed: Transaction::empty_signed(), signed: Transaction::empty_signed(),
})) }))
} }
}
coordinator::ProcessorMessage::BatchShare { id, share } => { coordinator::ProcessorMessage::BatchShare { id, share } => {
Some(Transaction::BatchShare(SignData { Some(Transaction::BatchShare(SignData {
plan: id.id, plan: id.id,
@ -383,13 +445,6 @@ pub async fn handle_processors<D: Db, Pro: Processor, P: P2p>(
// If this created a transaction, publish it // If this created a transaction, publish it
if let Some(mut tx) = tx { if let Some(mut tx) = tx {
// Get the next nonce
// let mut txn = db.txn();
// let nonce = MainDb::tx_nonce(&mut txn, msg.id, tributary);
let nonce = 0; // TODO
tx.sign(&mut OsRng, genesis, &key, nonce);
let tributaries = tributaries.read().await; let tributaries = tributaries.read().await;
let Some(tributary) = tributaries.get(&genesis) else { let Some(tributary) = tributaries.get(&genesis) else {
// TODO: This can happen since Substrate tells the Processor to generate commitments // TODO: This can happen since Substrate tells the Processor to generate commitments
@ -399,21 +454,29 @@ pub async fn handle_processors<D: Db, Pro: Processor, P: P2p>(
}; };
let tributary = tributary.tributary.read().await; let tributary = tributary.tributary.read().await;
if tributary
.next_nonce(pub_key) match tx.kind() {
.await TransactionKind::Provided(_) => {
.expect("we don't have a nonce, meaning we aren't a participant on this tributary") > let res = tributary.provide_transaction(tx).await;
nonce if !(res.is_ok() || (res == Err(ProvidedError::AlreadyProvided))) {
{ panic!("provided an invalid transaction: {res:?}");
log::warn!("we've already published this transaction. this should only appear on reboot");
} else {
// We should've created a valid transaction
// TODO: Delay SignPreprocess/BatchPreprocess until associated ID is valid
assert!(tributary.add_transaction(tx).await, "created an invalid transaction");
} }
}
TransactionKind::Signed(_) => {
// Get the next nonce
// let mut txn = db.txn();
// let nonce = MainDb::tx_nonce(&mut txn, msg.id, tributary);
let nonce = 0; // TODO
tx.sign(&mut OsRng, genesis, &key, nonce);
publish_transaction(&tributary, tx).await;
// txn.commit(); // txn.commit();
} }
_ => panic!("created an unexpected transaction"),
}
}
} }
} }
@ -446,13 +509,61 @@ pub async fn run<D: Db, Pro: Processor, P: P2p>(
} }
// Handle new blocks for each Tributary // Handle new blocks for each Tributary
let (recognized_id_send, mut recognized_id_recv) = mpsc::unbounded_channel();
{
let raw_db = raw_db.clone();
tokio::spawn(scan_tributaries( tokio::spawn(scan_tributaries(
raw_db.clone(), raw_db,
key.clone(), key.clone(),
recognized_id_send,
p2p.clone(), p2p.clone(),
processor.clone(), processor.clone(),
tributaries.clone(), tributaries.clone(),
)); ));
}
// When we reach consensus on a new external block, send our BatchPreprocess for it
tokio::spawn({
let raw_db = raw_db.clone();
let key = key.clone();
let tributaries = tributaries.clone();
async move {
loop {
if let Some((genesis, id_type, id)) = recognized_id_recv.recv().await {
let mut tx = match id_type {
RecognizedIdType::Block => Transaction::BatchPreprocess(SignData {
plan: id,
attempt: 0,
data: MainDb::<D>::first_preprocess(&raw_db, id),
signed: Transaction::empty_signed(),
}),
RecognizedIdType::Plan => Transaction::SignPreprocess(SignData {
plan: id,
attempt: 0,
data: MainDb::<D>::first_preprocess(&raw_db, id),
signed: Transaction::empty_signed(),
}),
};
let nonce = 0; // TODO
tx.sign(&mut OsRng, genesis, &key, nonce);
// TODO: Consolidate this code with the above instance
let tributaries = tributaries.read().await;
let Some(tributary) = tributaries.get(&genesis) else {
panic!("tributary we don't have came to consensus on an ExternalBlock");
};
let tributary = tributary.tributary.read().await;
publish_transaction(&tributary, tx).await;
} else {
log::warn!("recognized_id_recv was dropped. are we shutting down?");
break;
}
}
}
});
// Spawn the heartbeat task, which will trigger syncing if there hasn't been a Tributary block // Spawn the heartbeat task, which will trigger syncing if there hasn't been a Tributary block
// in a while (presumably because we're behind) // in a while (presumably because we're behind)
@ -462,7 +573,7 @@ pub async fn run<D: Db, Pro: Processor, P: P2p>(
tokio::spawn(handle_p2p(Ristretto::generator() * key.deref(), p2p, tributaries.clone())); tokio::spawn(handle_p2p(Ristretto::generator() * key.deref(), p2p, tributaries.clone()));
// Handle all messages from processors // Handle all messages from processors
handle_processors(key, processor, tributaries).await; handle_processors(raw_db, key, processor, tributaries).await;
} }
#[tokio::main] #[tokio::main]

View file

@ -7,7 +7,7 @@ use rand_core::{RngCore, OsRng};
use ciphersuite::{Ciphersuite, Ristretto}; use ciphersuite::{Ciphersuite, Ristretto};
use frost::Participant; use frost::Participant;
use tokio::time::sleep; use tokio::{time::sleep, sync::mpsc};
use serai_db::MemDb; use serai_db::MemDb;
@ -81,7 +81,16 @@ async fn dkg_test() {
) -> (TributaryDb<MemDb>, MemProcessor) { ) -> (TributaryDb<MemDb>, MemProcessor) {
let mut scanner_db = TributaryDb(MemDb::new()); let mut scanner_db = TributaryDb(MemDb::new());
let processor = MemProcessor::new(); let processor = MemProcessor::new();
handle_new_blocks(&mut scanner_db, key, &processor, spec, &tributary.reader()).await; // Uses a brand new channel since this channel won't be used within this test
handle_new_blocks(
&mut scanner_db,
key,
&mpsc::unbounded_channel().0,
&processor,
spec,
&tributary.reader(),
)
.await;
(scanner_db, processor) (scanner_db, processor)
} }
@ -96,7 +105,15 @@ async fn dkg_test() {
sleep(Duration::from_secs(Tributary::<MemDb, Transaction, LocalP2p>::block_time().into())).await; sleep(Duration::from_secs(Tributary::<MemDb, Transaction, LocalP2p>::block_time().into())).await;
// Verify the scanner emits a KeyGen::Commitments message // Verify the scanner emits a KeyGen::Commitments message
handle_new_blocks(&mut scanner_db, &keys[0], &processor, &spec, &tributaries[0].1.reader()).await; handle_new_blocks(
&mut scanner_db,
&keys[0],
&mpsc::unbounded_channel().0,
&processor,
&spec,
&tributaries[0].1.reader(),
)
.await;
{ {
let mut msgs = processor.0.write().await; let mut msgs = processor.0.write().await;
assert_eq!(msgs.pop_front().unwrap(), expected_commitments); assert_eq!(msgs.pop_front().unwrap(), expected_commitments);
@ -137,7 +154,15 @@ async fn dkg_test() {
} }
// With just 4 sets of shares, nothing should happen yet // With just 4 sets of shares, nothing should happen yet
handle_new_blocks(&mut scanner_db, &keys[0], &processor, &spec, &tributaries[0].1.reader()).await; handle_new_blocks(
&mut scanner_db,
&keys[0],
&mpsc::unbounded_channel().0,
&processor,
&spec,
&tributaries[0].1.reader(),
)
.await;
assert!(processor.0.write().await.is_empty()); assert!(processor.0.write().await.is_empty());
// Publish the final set of shares // Publish the final set of shares
@ -168,7 +193,15 @@ async fn dkg_test() {
}; };
// Any scanner which has handled the prior blocks should only emit the new event // Any scanner which has handled the prior blocks should only emit the new event
handle_new_blocks(&mut scanner_db, &keys[0], &processor, &spec, &tributaries[0].1.reader()).await; handle_new_blocks(
&mut scanner_db,
&keys[0],
&mpsc::unbounded_channel().0,
&processor,
&spec,
&tributaries[0].1.reader(),
)
.await;
{ {
let mut msgs = processor.0.write().await; let mut msgs = processor.0.write().await;
assert_eq!(msgs.pop_front().unwrap(), shares_for(0)); assert_eq!(msgs.pop_front().unwrap(), shares_for(0));

View file

@ -27,17 +27,17 @@ impl<D: Db> TributaryDb<D> {
self.0.get(Self::block_key(genesis)).map(|last| last.try_into().unwrap()).unwrap_or(genesis) self.0.get(Self::block_key(genesis)).map(|last| last.try_into().unwrap()).unwrap_or(genesis)
} }
// This shouldn't need genesis? Yet it's saner to have then quibble about.
fn batch_id_key(genesis: &[u8], ext_block: [u8; 32]) -> Vec<u8> {
Self::tributary_key(b"batch_id", [genesis, ext_block.as_ref()].concat())
}
pub fn batch_id<G: Get>(getter: &G, genesis: [u8; 32], ext_block: [u8; 32]) -> Option<[u8; 32]> {
getter.get(Self::batch_id_key(&genesis, ext_block)).map(|bytes| bytes.try_into().unwrap())
}
fn plan_ids_key(genesis: &[u8], block: u64) -> Vec<u8> { fn plan_ids_key(genesis: &[u8], block: u64) -> Vec<u8> {
Self::tributary_key(b"plan_ids", [genesis, block.to_le_bytes().as_ref()].concat()) Self::tributary_key(b"plan_ids", [genesis, block.to_le_bytes().as_ref()].concat())
} }
pub fn set_plan_ids(
txn: &mut D::Transaction<'_>,
genesis: [u8; 32],
block: u64,
plans: &[[u8; 32]],
) {
txn.put(Self::plan_ids_key(&genesis, block), plans.concat());
}
pub fn plan_ids<G: Get>(getter: &G, genesis: [u8; 32], block: u64) -> Option<Vec<[u8; 32]>> { pub fn plan_ids<G: Get>(getter: &G, genesis: [u8; 32], block: u64) -> Option<Vec<[u8; 32]>> {
getter.get(Self::plan_ids_key(&genesis, block)).map(|bytes| { getter.get(Self::plan_ids_key(&genesis, block)).map(|bytes| {
let mut res = vec![]; let mut res = vec![];

View file

@ -5,6 +5,8 @@ use zeroize::Zeroizing;
use ciphersuite::{Ciphersuite, Ristretto}; use ciphersuite::{Ciphersuite, Ristretto};
use tokio::sync::mpsc::UnboundedSender;
use tributary::{Signed, Block, TributaryReader}; use tributary::{Signed, Block, TributaryReader};
use processor_messages::{ use processor_messages::{
@ -21,10 +23,17 @@ use crate::{
tributary::{TributaryDb, TributarySpec, Transaction}, tributary::{TributaryDb, TributarySpec, Transaction},
}; };
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum RecognizedIdType {
Block,
Plan,
}
// Handle a specific Tributary block // Handle a specific Tributary block
async fn handle_block<D: Db, Pro: Processor>( async fn handle_block<D: Db, Pro: Processor>(
db: &mut TributaryDb<D>, db: &mut TributaryDb<D>,
key: &Zeroizing<<Ristretto as Ciphersuite>::F>, key: &Zeroizing<<Ristretto as Ciphersuite>::F>,
recognized_id: &UnboundedSender<([u8; 32], RecognizedIdType, [u8; 32])>,
processor: &Pro, processor: &Pro,
spec: &TributarySpec, spec: &TributarySpec,
block: Block<Transaction>, block: Block<Transaction>,
@ -172,16 +181,10 @@ async fn handle_block<D: Db, Pro: Processor>(
Transaction::ExternalBlock(block) => { Transaction::ExternalBlock(block) => {
// Because this external block has been finalized, its batch ID should be authorized // Because this external block has been finalized, its batch ID should be authorized
TributaryDb::<D>::recognize_id(&mut txn, Zone::Batch.label(), genesis, block);
// If we didn't provide this transaction, we should halt until we do recognized_id
// If we provided a distinct transaction, we should error .send((genesis, RecognizedIdType::Block, block))
// If we did provide this transaction, we should've set the batch ID for the block .expect("recognized_id_recv was dropped. are we shutting down?");
let batch_id = TributaryDb::<D>::batch_id(&txn, genesis, block).expect(
"synced a tributary block finalizing a external block in a provided transaction \
despite us not providing that transaction",
);
TributaryDb::<D>::recognize_id(&mut txn, Zone::Batch.label(), genesis, batch_id);
} }
Transaction::SubstrateBlock(block) => { Transaction::SubstrateBlock(block) => {
@ -192,6 +195,9 @@ async fn handle_block<D: Db, Pro: Processor>(
for id in plan_ids { for id in plan_ids {
TributaryDb::<D>::recognize_id(&mut txn, Zone::Sign.label(), genesis, id); TributaryDb::<D>::recognize_id(&mut txn, Zone::Sign.label(), genesis, id);
recognized_id
.send((genesis, RecognizedIdType::Plan, id))
.expect("recognized_id_recv was dropped. are we shutting down?");
} }
} }
@ -287,6 +293,7 @@ async fn handle_block<D: Db, Pro: Processor>(
pub async fn handle_new_blocks<D: Db, Pro: Processor>( pub async fn handle_new_blocks<D: Db, Pro: Processor>(
db: &mut TributaryDb<D>, db: &mut TributaryDb<D>,
key: &Zeroizing<<Ristretto as Ciphersuite>::F>, key: &Zeroizing<<Ristretto as Ciphersuite>::F>,
recognized_id: &UnboundedSender<([u8; 32], RecognizedIdType, [u8; 32])>,
processor: &Pro, processor: &Pro,
spec: &TributarySpec, spec: &TributarySpec,
tributary: &TributaryReader<D, Transaction>, tributary: &TributaryReader<D, Transaction>,
@ -295,7 +302,7 @@ pub async fn handle_new_blocks<D: Db, Pro: Processor>(
let mut last_block = db.last_block(genesis); let mut last_block = db.last_block(genesis);
while let Some(next) = tributary.block_after(&last_block) { while let Some(next) = tributary.block_after(&last_block) {
let block = tributary.block(&next).unwrap(); let block = tributary.block(&next).unwrap();
handle_block(db, key, processor, spec, block).await; handle_block(db, key, recognized_id, processor, spec, block).await;
last_block = next; last_block = next;
db.set_last_block(genesis, next); db.set_last_block(genesis, next);
} }

View file

@ -325,6 +325,10 @@ impl<C: Coin, D: Db> Signer<C, D> {
Ok(machine) => machine, Ok(machine) => machine,
}; };
// TODO: Use a seeded RNG here so we don't produce distinct messages with the same intent
// This is also needed so we don't preprocess, send preprocess, reboot before ack'ing the
// message, send distinct preprocess, and then attempt a signing session premised on the former
// with the latter
let (machine, preprocess) = machine.preprocess(&mut OsRng); let (machine, preprocess) = machine.preprocess(&mut OsRng);
self.preprocessing.insert(id.id, machine); self.preprocessing.insert(id.id, machine);

View file

@ -190,6 +190,10 @@ impl<D: Db> SubstrateSigner<D> {
// b"substrate" is a literal from sp-core // b"substrate" is a literal from sp-core
let machine = AlgorithmMachine::new(Schnorrkel::new(b"substrate"), self.keys.clone()); let machine = AlgorithmMachine::new(Schnorrkel::new(b"substrate"), self.keys.clone());
// TODO: Use a seeded RNG here so we don't produce distinct messages with the same purpose
// This is also needed so we don't preprocess, send preprocess, reboot before ack'ing the
// message, send distinct preprocess, and then attempt a signing session premised on the former
// with the latter
let (machine, preprocess) = machine.preprocess(&mut OsRng); let (machine, preprocess) = machine.preprocess(&mut OsRng);
self.preprocessing.insert(id.id, machine); self.preprocessing.insert(id.id, machine);
@ -206,6 +210,7 @@ impl<D: Db> SubstrateSigner<D> {
return; return;
} }
// Use the block hash as the ID
let id = batch.block.0; let id = batch.block.0;
self.signable.insert(id, batch); self.signable.insert(id, batch);
self.attempt(txn, id, 0).await; self.attempt(txn, id, 0).await;