3.7.2 Randomize which side odd elements end up on during blame

This commit is contained in:
Luke Parker 2023-03-02 01:55:08 -05:00
parent 15d6be1678
commit 93d5f41917
No known key found for this signature in database

View file

@ -22,11 +22,13 @@ where
/// A batch verifier intended to verify a series of statements are each equivalent to zero. /// A batch verifier intended to verify a series of statements are each equivalent to zero.
#[allow(clippy::type_complexity)] #[allow(clippy::type_complexity)]
#[derive(Clone, Zeroize)] #[derive(Clone, Zeroize)]
pub struct BatchVerifier<Id: Copy + Zeroize, G: Group + Zeroize>( pub struct BatchVerifier<Id: Copy + Zeroize, G: Group + Zeroize>
Zeroizing<Vec<(Id, Vec<(G::Scalar, G)>)>>,
)
where where
<G as Group>::Scalar: PrimeFieldBits + Zeroize; <G as Group>::Scalar: PrimeFieldBits + Zeroize,
{
split: u64,
statements: Zeroizing<Vec<(Id, Vec<(G::Scalar, G)>)>>,
}
impl<Id: Copy + Zeroize, G: Group + Zeroize> BatchVerifier<Id, G> impl<Id: Copy + Zeroize, G: Group + Zeroize> BatchVerifier<Id, G>
where where
@ -35,7 +37,7 @@ where
/// Create a new batch verifier, expected to verify the following amount of statements. /// Create a new batch verifier, expected to verify the following amount of statements.
/// This is a size hint and is not required to be accurate. /// This is a size hint and is not required to be accurate.
pub fn new(capacity: usize) -> BatchVerifier<Id, G> { pub fn new(capacity: usize) -> BatchVerifier<Id, G> {
BatchVerifier(Zeroizing::new(Vec::with_capacity(capacity))) BatchVerifier { split: 0, statements: Zeroizing::new(Vec::with_capacity(capacity)) }
} }
/// Queue a statement for batch verification. /// Queue a statement for batch verification.
@ -45,8 +47,15 @@ where
id: Id, id: Id,
pairs: I, pairs: I,
) { ) {
// If this is the first time we're queueing a value, grab a u64 (AKA 64 bits) to determine
// which side to handle odd splits with during blame (preventing malicious actors from gaming
// the system by maximizing the round length)
if self.statements.len() == 0 {
self.split = rng.next_u64();
}
// Define a unique scalar factor for this set of variables so individual items can't overlap // Define a unique scalar factor for this set of variables so individual items can't overlap
let u = if self.0.is_empty() { let u = if self.statements.is_empty() {
G::Scalar::one() G::Scalar::one()
} else { } else {
let mut weight; let mut weight;
@ -88,19 +97,21 @@ where
weight weight
}; };
self.0.push((id, pairs.into_iter().map(|(scalar, point)| (scalar * u, point)).collect())); self
.statements
.push((id, pairs.into_iter().map(|(scalar, point)| (scalar * u, point)).collect()));
} }
/// Perform batch verification, returning a boolean of if the statements equaled zero. /// Perform batch verification, returning a boolean of if the statements equaled zero.
#[must_use] #[must_use]
pub fn verify(&self) -> bool { pub fn verify(&self) -> bool {
multiexp(&flat(&self.0)).is_identity().into() multiexp(&flat(&self.statements)).is_identity().into()
} }
/// Perform batch verification in variable time. /// Perform batch verification in variable time.
#[must_use] #[must_use]
pub fn verify_vartime(&self) -> bool { pub fn verify_vartime(&self) -> bool {
multiexp_vartime(&flat(&self.0)).is_identity().into() multiexp_vartime(&flat(&self.statements)).is_identity().into()
} }
/// Perform a binary search to identify which statement does not equal 0, returning None if all /// Perform a binary search to identify which statement does not equal 0, returning None if all
@ -108,9 +119,21 @@ where
/// multiple are invalid. /// multiple are invalid.
// A constant time variant may be beneficial for robust protocols // A constant time variant may be beneficial for robust protocols
pub fn blame_vartime(&self) -> Option<Id> { pub fn blame_vartime(&self) -> Option<Id> {
let mut slice = self.0.as_slice(); let mut slice = self.statements.as_slice();
let mut split_side = self.split;
while slice.len() > 1 { while slice.len() > 1 {
let split = slice.len() / 2; let mut split = slice.len() / 2;
// If there's an odd number of elements, this can be gamed to increase the amount of rounds
// For [0, 1, 2], where 2 is invalid, this will take three rounds
// ([0], [1, 2]), then ([1], [2]), before just 2
// If 1 and 2 were valid, this would've only taken 2 rounds to complete
// To prevent this from being gamed, if there's an odd number of elements, randomize which
// side the split occurs on
if slice.len() % 2 == 1 {
split += usize::try_from(split_side & 1).unwrap();
split_side >>= 1;
}
if multiexp_vartime(&flat(&slice[.. split])).is_identity().into() { if multiexp_vartime(&flat(&slice[.. split])).is_identity().into() {
slice = &slice[split ..]; slice = &slice[split ..];