Update the Router smart contract to pay fees to the caller

The caller is paid a fixed fee per unit of gas spent. That arguably
incentivizes the publisher to raise the gas used by internal calls, yet this
doesn't effect the user UX as they'll have flatly paid the worst-case fee
already. It does pose a risk where callers are arguably incentivized to cause
transaction failures which consume all the gas, not just increased gas, yet:

1) Modern smart contracts don't error by consuming all the gas
2) This is presumably infeasible
3) Even if it was feasible, the gas fees gained presumably exceed the gas fees
   spent causing the failure

The benefit to only paying the callers for the gas used, not the gas alotted,
is it allows Serai to build up a buffer. While this should be minor, a few
cents on every transaction at best, if we ever do have any costs slip through
the cracks, it ideally is sufficient to handle those.
This commit is contained in:
Luke Parker 2024-09-19 23:24:20 -04:00
parent 1b1aa74770
commit 8ea5acbacb
2 changed files with 104 additions and 61 deletions

View file

@ -27,14 +27,13 @@ contract Router {
}
struct CodeDestination {
uint32 gas;
uint32 gas_limit;
bytes code;
}
struct OutInstruction {
DestinationType destinationType;
bytes destination;
address coin;
uint256 value;
}
@ -79,7 +78,8 @@ contract Router {
{
// This DST needs a length prefix as well to prevent DSTs potentially being substrings of each
// other, yet this fine for our very well-defined, limited use
bytes32 message = keccak256(abi.encodePacked("updateSeraiKey", block.chainid, _nonce, newSeraiKey));
bytes32 message =
keccak256(abi.encodePacked("updateSeraiKey", block.chainid, _nonce, newSeraiKey));
_nonce++;
if (!Schnorr.verify(_seraiKey, message, signature.c, signature.s)) {
@ -89,9 +89,7 @@ contract Router {
function inInstruction(address coin, uint256 amount, bytes memory instruction) external payable {
if (coin == address(0)) {
if (amount != msg.value) {
revert InvalidAmount();
}
if (amount != msg.value) revert InvalidAmount();
} else {
(bool success, bytes memory res) = address(coin).call(
abi.encodeWithSelector(IERC20.transferFrom.selector, msg.sender, address(this), amount)
@ -100,9 +98,7 @@ contract Router {
// Require there was nothing returned, which is done by some non-standard tokens, or that the
// ERC20 contract did in fact return true
bool nonStandardResOrTrue = (res.length == 0) || abi.decode(res, (bool));
if (!(success && nonStandardResOrTrue)) {
revert FailedTransfer();
}
if (!(success && nonStandardResOrTrue)) revert FailedTransfer();
}
/*
@ -166,12 +162,20 @@ contract Router {
}
// Execute a list of transactions if they were signed by the current key with the current nonce
function execute(OutInstruction[] calldata transactions, Signature calldata signature) external {
function execute(
address coin,
uint256 fee_per_gas,
OutInstruction[] calldata transactions,
Signature calldata signature
) external {
uint256 gasLeftAtStart = gasleft();
// Verify the signature
// We hash the message here as we need the message's hash for the Executed event
// Since we're already going to hash it, hashing it prior to verifying the signature reduces the
// amount of words hashed by its challenge function (reducing our gas costs)
bytes32 message = keccak256(abi.encode("execute", block.chainid, _nonce, transactions));
bytes32 message =
keccak256(abi.encode("execute", block.chainid, _nonce, coin, fee_per_gas, transactions));
if (!Schnorr.verify(_seraiKey, message, signature.c, signature.s)) {
revert InvalidSignature();
}
@ -187,8 +191,9 @@ contract Router {
if (transactions[i].destinationType == DestinationType.Address) {
// This may cause a panic and the contract to become stuck if the destination isn't actually
// 20 bytes. Serai is trusted to not pass a malformed destination
(AddressDestination memory destination) = abi.decode(transactions[i].destination, (AddressDestination));
_transferOut(destination.destination, transactions[i].coin, transactions[i].value);
(AddressDestination memory destination) =
abi.decode(transactions[i].destination, (AddressDestination));
_transferOut(destination.destination, coin, transactions[i].value);
} else {
// The destination is a piece of initcode. We calculate the hash of the will-be contract,
// transfer to it, and then run the initcode
@ -196,15 +201,36 @@ contract Router {
address(uint160(uint256(keccak256(abi.encode(address(this), _smartContractNonce)))));
// Perform the transfer
_transferOut(nextAddress, transactions[i].coin, transactions[i].value);
_transferOut(nextAddress, coin, transactions[i].value);
// Perform the calls with a set gas budget
(CodeDestination memory destination) = abi.decode(transactions[i].destination, (CodeDestination));
address(this).call{ gas: destination.gas }(
(CodeDestination memory destination) =
abi.decode(transactions[i].destination, (CodeDestination));
address(this).call{ gas: destination.gas_limit }(
abi.encodeWithSelector(Router.arbitaryCallOut.selector, destination.code)
);
}
}
// Calculate the gas which will be used to transfer the fee out
// This is meant to be always over, never under, with any excess being a tip to the publisher
uint256 gasToTransferOut;
if (coin == address(0)) {
// 5,000 gas is explicitly allowed, with another 10,000 for whatever overhead remains
// unaccounted for
gasToTransferOut = 15_000;
} else {
// 100_000 gas is explicitly allowed, with another 15,000 for whatever overhead remains
// unaccounted for. More gas is given than for ETH due to needing to ABI encode the function
// call
gasToTransferOut = 115_000;
}
// Calculate the gas used
uint256 gasLeftAtEnd = gasleft();
uint256 gasUsed = gasLeftAtStart - gasLeftAtEnd;
// Transfer to the caller the fee
_transferOut(msg.sender, coin, (gasUsed + gasToTransferOut) * fee_per_gas);
}
function nonce() external view returns (uint256) {

View file

@ -47,7 +47,7 @@ impl From<&Signature> for abi::Signature {
}
/// A coin on Ethereum.
#[derive(Clone, PartialEq, Eq, Debug)]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum Coin {
/// Ether, the native coin of Ethereum.
Ether,
@ -56,6 +56,14 @@ pub enum Coin {
}
impl Coin {
fn address(&self) -> Address {
(match self {
Coin::Ether => [0; 20],
Coin::Erc20(address) => *address,
})
.into()
}
/// Read a `Coin`.
pub fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut kind = [0xff];
@ -152,12 +160,12 @@ impl InInstruction {
/// A list of `OutInstruction`s.
#[derive(Clone)]
pub struct OutInstructions(Vec<abi::OutInstruction>);
impl From<&[(SeraiAddress, (Coin, U256))]> for OutInstructions {
fn from(outs: &[(SeraiAddress, (Coin, U256))]) -> Self {
impl From<&[(SeraiAddress, U256)]> for OutInstructions {
fn from(outs: &[(SeraiAddress, U256)]) -> Self {
Self(
outs
.iter()
.map(|(address, (coin, amount))| {
.map(|(address, amount)| {
#[allow(non_snake_case)]
let (destinationType, destination) = match address {
SeraiAddress::Address(address) => (
@ -166,19 +174,14 @@ impl From<&[(SeraiAddress, (Coin, U256))]> for OutInstructions {
),
SeraiAddress::Contract(contract) => (
abi::DestinationType::Code,
(abi::CodeDestination { gas: contract.gas(), code: contract.code().to_vec().into() })
(abi::CodeDestination {
gas_limit: contract.gas_limit(),
code: contract.code().to_vec().into(),
})
.abi_encode(),
),
};
abi::OutInstruction {
destinationType,
destination: destination.into(),
coin: match coin {
Coin::Ether => [0; 20].into(),
Coin::Erc20(address) => address.into(),
},
value: *amount,
}
abi::OutInstruction { destinationType, destination: destination.into(), value: *amount }
})
.collect(),
)
@ -318,17 +321,31 @@ impl Router {
}
/// Get the message to be signed in order to execute a series of `OutInstruction`s.
pub fn execute_message(chain_id: U256, nonce: u64, outs: OutInstructions) -> Vec<u8> {
("execute", chain_id, U256::try_from(nonce).expect("couldn't convert u64 to u256"), outs.0)
pub fn execute_message(
chain_id: U256,
nonce: u64,
coin: Coin,
fee_per_gas: U256,
outs: OutInstructions,
) -> Vec<u8> {
("execute", chain_id, U256::try_from(nonce).unwrap(), coin.address(), fee_per_gas, outs.0)
.abi_encode()
}
/// Construct a transaction to execute a batch of `OutInstruction`s.
pub fn execute(&self, outs: OutInstructions, sig: &Signature) -> TxLegacy {
pub fn execute(
&self,
coin: Coin,
fee_per_gas: U256,
outs: OutInstructions,
sig: &Signature,
) -> TxLegacy {
let outs_len = outs.0.len();
TxLegacy {
to: TxKind::Call(self.1),
input: abi::executeCall::new((outs.0, sig.into())).abi_encode().into(),
input: abi::executeCall::new((coin.address(), fee_per_gas, outs.0, sig.into()))
.abi_encode()
.into(),
// TODO
gas_limit: 100_000 + ((200_000 + 10_000) * u128::try_from(outs_len).unwrap()),
..Default::default()