3.7.3 Add multiexp tests

This commit is contained in:
Luke Parker 2023-03-02 03:58:48 -05:00
parent 93d5f41917
commit 8661111fc6
No known key found for this signature in database
4 changed files with 144 additions and 3 deletions

View file

@ -130,6 +130,14 @@ where
// If 1 and 2 were valid, this would've only taken 2 rounds to complete // If 1 and 2 were valid, this would've only taken 2 rounds to complete
// To prevent this from being gamed, if there's an odd number of elements, randomize which // To prevent this from being gamed, if there's an odd number of elements, randomize which
// side the split occurs on // side the split occurs on
// This does risk breaking determinism
// The concern is if the select split point causes different paths to be taken when multiple
// invalid elements exist
// While the split point may move an element from the right to the left, always choosing the
// left side (if it's invalid) means this will still always return the left-most,
// invalid element
if slice.len() % 2 == 1 { if slice.len() % 2 == 1 {
split += usize::try_from(split_side & 1).unwrap(); split += usize::try_from(split_side & 1).unwrap();
split_side >>= 1; split_side >>= 1;

View file

@ -169,6 +169,7 @@ where
match algorithm(pairs.len()) { match algorithm(pairs.len()) {
Algorithm::Null => Group::identity(), Algorithm::Null => Group::identity(),
Algorithm::Single => pairs[0].1 * pairs[0].0, Algorithm::Single => pairs[0].1 * pairs[0].0,
// These functions panic if called without any pairs
Algorithm::Straus(window) => straus(pairs, window), Algorithm::Straus(window) => straus(pairs, window),
Algorithm::Pippenger(window) => pippenger(pairs, window), Algorithm::Pippenger(window) => pippenger(pairs, window),
} }

View file

@ -0,0 +1,94 @@
use rand_core::OsRng;
use zeroize::Zeroize;
use rand_core::RngCore;
use ff::{Field, PrimeFieldBits};
use group::Group;
use crate::BatchVerifier;
pub(crate) fn test_batch<G: Group + Zeroize>()
where
G::Scalar: PrimeFieldBits + Zeroize,
{
let valid = |batch: BatchVerifier<_, G>| {
assert!(batch.verify());
assert!(batch.verify_vartime());
assert_eq!(batch.blame_vartime(), None);
assert_eq!(batch.verify_with_vartime_blame(), Ok(()));
assert_eq!(batch.verify_vartime_with_vartime_blame(), Ok(()));
};
let invalid = |batch: BatchVerifier<_, G>, id| {
assert!(!batch.verify());
assert!(!batch.verify_vartime());
assert_eq!(batch.blame_vartime(), Some(id));
assert_eq!(batch.verify_with_vartime_blame(), Err(id));
assert_eq!(batch.verify_vartime_with_vartime_blame(), Err(id));
};
// Test an empty batch
let batch = BatchVerifier::new(0);
valid(batch);
// Test a batch with one set of statements
let valid_statements =
vec![(-G::Scalar::one(), G::generator()), (G::Scalar::one(), G::generator())];
let mut batch = BatchVerifier::new(1);
batch.queue(&mut OsRng, 0, valid_statements.clone());
valid(batch);
// Test a batch with an invalid set of statements fails properly
let invalid_statements = vec![(-G::Scalar::one(), G::generator())];
let mut batch = BatchVerifier::new(1);
batch.queue(&mut OsRng, 0, invalid_statements.clone());
invalid(batch, 0);
// Test blame can properly identify faulty participants
// Run with 17 statements, rotating which one is faulty
for i in 0 .. 17 {
let mut batch = BatchVerifier::new(17);
for j in 0 .. 17 {
batch.queue(
&mut OsRng,
j,
if i == j { invalid_statements.clone() } else { valid_statements.clone() },
);
}
invalid(batch, i);
}
// Test blame always identifies the left-most invalid statement
for i in 1 .. 32 {
for j in 1 .. i {
let mut batch = BatchVerifier::new(j);
let mut leftmost = None;
// Create j statements
for k in 0 .. j {
batch.queue(
&mut OsRng,
k,
// The usage of i / 10 makes this less likely to add invalid elements, and increases
// the space between them
// For high i values, yet low j values, this will make it likely that random elements
// are at/near the end
if ((OsRng.next_u64() % u64::try_from(1 + (i / 4)).unwrap()) == 0) ||
(leftmost.is_none() && (k == (j - 1)))
{
if leftmost.is_none() {
leftmost = Some(k);
}
invalid_statements.clone()
} else {
valid_statements.clone()
},
);
}
invalid(batch, leftmost.unwrap());
}
}
}

View file

@ -10,7 +10,12 @@ use group::Group;
use k256::ProjectivePoint; use k256::ProjectivePoint;
use dalek_ff_group::EdwardsPoint; use dalek_ff_group::EdwardsPoint;
use crate::{straus, pippenger, multiexp, multiexp_vartime}; use crate::{straus, straus_vartime, pippenger, pippenger_vartime, multiexp, multiexp_vartime};
#[cfg(feature = "batch")]
mod batch;
#[cfg(feature = "batch")]
use batch::test_batch;
#[allow(dead_code)] #[allow(dead_code)]
fn benchmark_internal<G: Group>(straus_bool: bool) fn benchmark_internal<G: Group>(straus_bool: bool)
@ -85,26 +90,59 @@ fn test_multiexp<G: Group>()
where where
G::Scalar: PrimeFieldBits + Zeroize, G::Scalar: PrimeFieldBits + Zeroize,
{ {
let test = |pairs: &[_], sum| {
// These should automatically determine the best algorithm
assert_eq!(multiexp(pairs), sum);
assert_eq!(multiexp_vartime(pairs), sum);
// Also explicitly test straus/pippenger for each bit size
if !pairs.is_empty() {
for window in 1 .. 8 {
assert_eq!(straus(pairs, window), sum);
assert_eq!(straus_vartime(pairs, window), sum);
assert_eq!(pippenger(pairs, window), sum);
assert_eq!(pippenger_vartime(pairs, window), sum);
}
}
};
// Test an empty multiexp is identity
test(&[], G::identity());
// Test an multiexp of identity/zero elements is identity
test(&[(G::Scalar::zero(), G::generator())], G::identity());
test(&[(G::Scalar::one(), G::identity())], G::identity());
// Test a variety of multiexp sizes
let mut pairs = Vec::with_capacity(1000); let mut pairs = Vec::with_capacity(1000);
let mut sum = G::identity(); let mut sum = G::identity();
for _ in 0 .. 10 { for _ in 0 .. 10 {
// Test a multiexp of a single item
// On successive loop iterations, this will test a multiexp with an odd number of pairs
pairs.push((G::Scalar::random(&mut OsRng), G::generator() * G::Scalar::random(&mut OsRng)));
sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0;
test(&pairs, sum);
for _ in 0 .. 100 { for _ in 0 .. 100 {
pairs.push((G::Scalar::random(&mut OsRng), G::generator() * G::Scalar::random(&mut OsRng))); pairs.push((G::Scalar::random(&mut OsRng), G::generator() * G::Scalar::random(&mut OsRng)));
sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0; sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0;
} }
assert_eq!(multiexp(&pairs), sum); test(&pairs, sum);
assert_eq!(multiexp_vartime(&pairs), sum);
} }
} }
#[test] #[test]
fn test_secp256k1() { fn test_secp256k1() {
test_multiexp::<ProjectivePoint>(); test_multiexp::<ProjectivePoint>();
#[cfg(feature = "batch")]
test_batch::<ProjectivePoint>();
} }
#[test] #[test]
fn test_ed25519() { fn test_ed25519() {
test_multiexp::<EdwardsPoint>(); test_multiexp::<EdwardsPoint>();
#[cfg(feature = "batch")]
test_batch::<EdwardsPoint>();
} }
#[ignore] #[ignore]