mirror of
https://github.com/serai-dex/serai.git
synced 2024-12-22 19:49:22 +00:00
3.7.3 Add multiexp tests
This commit is contained in:
parent
93d5f41917
commit
8661111fc6
4 changed files with 144 additions and 3 deletions
|
@ -130,6 +130,14 @@ where
|
|||
// If 1 and 2 were valid, this would've only taken 2 rounds to complete
|
||||
// To prevent this from being gamed, if there's an odd number of elements, randomize which
|
||||
// side the split occurs on
|
||||
|
||||
// This does risk breaking determinism
|
||||
// The concern is if the select split point causes different paths to be taken when multiple
|
||||
// invalid elements exist
|
||||
// While the split point may move an element from the right to the left, always choosing the
|
||||
// left side (if it's invalid) means this will still always return the left-most,
|
||||
// invalid element
|
||||
|
||||
if slice.len() % 2 == 1 {
|
||||
split += usize::try_from(split_side & 1).unwrap();
|
||||
split_side >>= 1;
|
||||
|
|
|
@ -169,6 +169,7 @@ where
|
|||
match algorithm(pairs.len()) {
|
||||
Algorithm::Null => Group::identity(),
|
||||
Algorithm::Single => pairs[0].1 * pairs[0].0,
|
||||
// These functions panic if called without any pairs
|
||||
Algorithm::Straus(window) => straus(pairs, window),
|
||||
Algorithm::Pippenger(window) => pippenger(pairs, window),
|
||||
}
|
||||
|
|
94
crypto/multiexp/src/tests/batch.rs
Normal file
94
crypto/multiexp/src/tests/batch.rs
Normal file
|
@ -0,0 +1,94 @@
|
|||
use rand_core::OsRng;
|
||||
|
||||
use zeroize::Zeroize;
|
||||
|
||||
use rand_core::RngCore;
|
||||
|
||||
use ff::{Field, PrimeFieldBits};
|
||||
use group::Group;
|
||||
|
||||
use crate::BatchVerifier;
|
||||
|
||||
pub(crate) fn test_batch<G: Group + Zeroize>()
|
||||
where
|
||||
G::Scalar: PrimeFieldBits + Zeroize,
|
||||
{
|
||||
let valid = |batch: BatchVerifier<_, G>| {
|
||||
assert!(batch.verify());
|
||||
assert!(batch.verify_vartime());
|
||||
assert_eq!(batch.blame_vartime(), None);
|
||||
assert_eq!(batch.verify_with_vartime_blame(), Ok(()));
|
||||
assert_eq!(batch.verify_vartime_with_vartime_blame(), Ok(()));
|
||||
};
|
||||
|
||||
let invalid = |batch: BatchVerifier<_, G>, id| {
|
||||
assert!(!batch.verify());
|
||||
assert!(!batch.verify_vartime());
|
||||
assert_eq!(batch.blame_vartime(), Some(id));
|
||||
assert_eq!(batch.verify_with_vartime_blame(), Err(id));
|
||||
assert_eq!(batch.verify_vartime_with_vartime_blame(), Err(id));
|
||||
};
|
||||
|
||||
// Test an empty batch
|
||||
let batch = BatchVerifier::new(0);
|
||||
valid(batch);
|
||||
|
||||
// Test a batch with one set of statements
|
||||
let valid_statements =
|
||||
vec![(-G::Scalar::one(), G::generator()), (G::Scalar::one(), G::generator())];
|
||||
let mut batch = BatchVerifier::new(1);
|
||||
batch.queue(&mut OsRng, 0, valid_statements.clone());
|
||||
valid(batch);
|
||||
|
||||
// Test a batch with an invalid set of statements fails properly
|
||||
let invalid_statements = vec![(-G::Scalar::one(), G::generator())];
|
||||
let mut batch = BatchVerifier::new(1);
|
||||
batch.queue(&mut OsRng, 0, invalid_statements.clone());
|
||||
invalid(batch, 0);
|
||||
|
||||
// Test blame can properly identify faulty participants
|
||||
// Run with 17 statements, rotating which one is faulty
|
||||
for i in 0 .. 17 {
|
||||
let mut batch = BatchVerifier::new(17);
|
||||
for j in 0 .. 17 {
|
||||
batch.queue(
|
||||
&mut OsRng,
|
||||
j,
|
||||
if i == j { invalid_statements.clone() } else { valid_statements.clone() },
|
||||
);
|
||||
}
|
||||
invalid(batch, i);
|
||||
}
|
||||
|
||||
// Test blame always identifies the left-most invalid statement
|
||||
for i in 1 .. 32 {
|
||||
for j in 1 .. i {
|
||||
let mut batch = BatchVerifier::new(j);
|
||||
let mut leftmost = None;
|
||||
|
||||
// Create j statements
|
||||
for k in 0 .. j {
|
||||
batch.queue(
|
||||
&mut OsRng,
|
||||
k,
|
||||
// The usage of i / 10 makes this less likely to add invalid elements, and increases
|
||||
// the space between them
|
||||
// For high i values, yet low j values, this will make it likely that random elements
|
||||
// are at/near the end
|
||||
if ((OsRng.next_u64() % u64::try_from(1 + (i / 4)).unwrap()) == 0) ||
|
||||
(leftmost.is_none() && (k == (j - 1)))
|
||||
{
|
||||
if leftmost.is_none() {
|
||||
leftmost = Some(k);
|
||||
}
|
||||
invalid_statements.clone()
|
||||
} else {
|
||||
valid_statements.clone()
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
invalid(batch, leftmost.unwrap());
|
||||
}
|
||||
}
|
||||
}
|
|
@ -10,7 +10,12 @@ use group::Group;
|
|||
use k256::ProjectivePoint;
|
||||
use dalek_ff_group::EdwardsPoint;
|
||||
|
||||
use crate::{straus, pippenger, multiexp, multiexp_vartime};
|
||||
use crate::{straus, straus_vartime, pippenger, pippenger_vartime, multiexp, multiexp_vartime};
|
||||
|
||||
#[cfg(feature = "batch")]
|
||||
mod batch;
|
||||
#[cfg(feature = "batch")]
|
||||
use batch::test_batch;
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn benchmark_internal<G: Group>(straus_bool: bool)
|
||||
|
@ -85,26 +90,59 @@ fn test_multiexp<G: Group>()
|
|||
where
|
||||
G::Scalar: PrimeFieldBits + Zeroize,
|
||||
{
|
||||
let test = |pairs: &[_], sum| {
|
||||
// These should automatically determine the best algorithm
|
||||
assert_eq!(multiexp(pairs), sum);
|
||||
assert_eq!(multiexp_vartime(pairs), sum);
|
||||
|
||||
// Also explicitly test straus/pippenger for each bit size
|
||||
if !pairs.is_empty() {
|
||||
for window in 1 .. 8 {
|
||||
assert_eq!(straus(pairs, window), sum);
|
||||
assert_eq!(straus_vartime(pairs, window), sum);
|
||||
assert_eq!(pippenger(pairs, window), sum);
|
||||
assert_eq!(pippenger_vartime(pairs, window), sum);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Test an empty multiexp is identity
|
||||
test(&[], G::identity());
|
||||
|
||||
// Test an multiexp of identity/zero elements is identity
|
||||
test(&[(G::Scalar::zero(), G::generator())], G::identity());
|
||||
test(&[(G::Scalar::one(), G::identity())], G::identity());
|
||||
|
||||
// Test a variety of multiexp sizes
|
||||
let mut pairs = Vec::with_capacity(1000);
|
||||
let mut sum = G::identity();
|
||||
for _ in 0 .. 10 {
|
||||
// Test a multiexp of a single item
|
||||
// On successive loop iterations, this will test a multiexp with an odd number of pairs
|
||||
pairs.push((G::Scalar::random(&mut OsRng), G::generator() * G::Scalar::random(&mut OsRng)));
|
||||
sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0;
|
||||
test(&pairs, sum);
|
||||
|
||||
for _ in 0 .. 100 {
|
||||
pairs.push((G::Scalar::random(&mut OsRng), G::generator() * G::Scalar::random(&mut OsRng)));
|
||||
sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0;
|
||||
}
|
||||
assert_eq!(multiexp(&pairs), sum);
|
||||
assert_eq!(multiexp_vartime(&pairs), sum);
|
||||
test(&pairs, sum);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_secp256k1() {
|
||||
test_multiexp::<ProjectivePoint>();
|
||||
#[cfg(feature = "batch")]
|
||||
test_batch::<ProjectivePoint>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ed25519() {
|
||||
test_multiexp::<EdwardsPoint>();
|
||||
#[cfg(feature = "batch")]
|
||||
test_batch::<EdwardsPoint>();
|
||||
}
|
||||
|
||||
#[ignore]
|
||||
|
|
Loading…
Reference in a new issue