Split tests across a few files, fuzz generate OutInstructions

Tests successful gas estimation even with more complex behaviors.
This commit is contained in:
Luke Parker 2025-01-27 13:59:11 -05:00
parent 0484113254
commit 835b5bb06f
No known key found for this signature in database
3 changed files with 435 additions and 340 deletions
processor/ethereum/router/src/tests

View file

@ -0,0 +1,172 @@
use alloy_core::primitives::{Address, U256};
use alloy_consensus::TxLegacy;
use alloy_provider::Provider;
use crate::tests::*;
impl Test {
pub(crate) fn escape_hatch_tx(&self, escape_to: Address) -> TxLegacy {
let msg = Router::escape_hatch_message(self.chain_id, self.state.next_nonce, escape_to);
let sig = sign(self.state.key.unwrap(), &msg);
let mut tx = self.router.escape_hatch(escape_to, &sig);
tx.gas_limit = Router::ESCAPE_HATCH_GAS + 5_000;
tx
}
pub(crate) async fn escape_hatch(&mut self) {
let mut escape_to = [0; 20];
OsRng.fill_bytes(&mut escape_to);
let escape_to = Address(escape_to.into());
// Set the code of the address to escape to so it isn't flagged as a non-contract
let () = self.provider.raw_request("anvil_setCode".into(), (escape_to, [0])).await.unwrap();
let mut tx = self.escape_hatch_tx(escape_to);
tx.gas_price = 100_000_000_000;
let tx = ethereum_primitives::deterministically_sign(tx);
let receipt = ethereum_test_primitives::publish_tx(&self.provider, tx.clone()).await;
assert!(receipt.status());
// This encodes an address which has 12 bytes of padding
assert_eq!(
CalldataAgnosticGas::calculate(tx.tx().input.as_ref(), 12, receipt.gas_used),
Router::ESCAPE_HATCH_GAS
);
{
let block = receipt.block_number.unwrap();
let executed = self.router.executed(block ..= block).await.unwrap();
assert_eq!(executed.len(), 1);
assert_eq!(executed[0], Executed::EscapeHatch { nonce: self.state.next_nonce, escape_to });
}
self.state.next_nonce += 1;
self.state.escaped_to = Some(escape_to);
self.verify_state().await;
}
pub(crate) fn escape_tx(&self, coin: Coin) -> TxLegacy {
let mut tx = self.router.escape(coin);
tx.gas_limit = 100_000;
tx.gas_price = 100_000_000_000;
tx
}
}
#[tokio::test]
async fn test_escape_hatch() {
let mut test = Test::new().await;
test.confirm_next_serai_key().await;
// Queue another key so the below test cases can run
test.update_serai_key().await;
{
// The zero address should be invalid to escape to
assert!(matches!(
test.call_and_decode_err(test.escape_hatch_tx([0; 20].into())).await,
IRouterErrors::InvalidEscapeAddress(IRouter::InvalidEscapeAddress {})
));
// Empty addresses should be invalid to escape to
assert!(matches!(
test.call_and_decode_err(test.escape_hatch_tx([1; 20].into())).await,
IRouterErrors::EscapeAddressWasNotAContract(IRouter::EscapeAddressWasNotAContract {})
));
// Non-empty addresses without code should be invalid to escape to
let tx = ethereum_primitives::deterministically_sign(TxLegacy {
to: Address([1; 20].into()).into(),
gas_limit: 21_000,
gas_price: 100_000_000_000,
value: U256::from(1),
..Default::default()
});
let receipt = ethereum_test_primitives::publish_tx(&test.provider, tx.clone()).await;
assert!(receipt.status());
assert!(matches!(
test.call_and_decode_err(test.escape_hatch_tx([1; 20].into())).await,
IRouterErrors::EscapeAddressWasNotAContract(IRouter::EscapeAddressWasNotAContract {})
));
// Escaping at this point in time should fail
assert!(matches!(
test.call_and_decode_err(test.router.escape(Coin::Ether)).await,
IRouterErrors::EscapeHatchNotInvoked(IRouter::EscapeHatchNotInvoked {})
));
}
// Invoke the escape hatch
test.escape_hatch().await;
// Now that the escape hatch has been invoked, all of the following calls should fail
{
assert!(matches!(
test.call_and_decode_err(test.update_serai_key_tx().1).await,
IRouterErrors::EscapeHatchInvoked(IRouter::EscapeHatchInvoked {})
));
assert!(matches!(
test.call_and_decode_err(test.confirm_next_serai_key_tx()).await,
IRouterErrors::EscapeHatchInvoked(IRouter::EscapeHatchInvoked {})
));
assert!(matches!(
test.call_and_decode_err(test.eth_in_instruction_tx().3).await,
IRouterErrors::EscapeHatchInvoked(IRouter::EscapeHatchInvoked {})
));
assert!(matches!(
test
.call_and_decode_err(test.execute_tx(Coin::Ether, U256::from(0), [].as_slice().into()).1)
.await,
IRouterErrors::EscapeHatchInvoked(IRouter::EscapeHatchInvoked {})
));
// We reject further attempts to update the escape hatch to prevent the last key from being
// able to switch from the honest escape hatch to siphoning via a malicious escape hatch (such
// as after the validators represented unstake)
assert!(matches!(
test.call_and_decode_err(test.escape_hatch_tx(test.state.escaped_to.unwrap())).await,
IRouterErrors::EscapeHatchInvoked(IRouter::EscapeHatchInvoked {})
));
}
// Check the escape fn itself
// ETH
{
let () = test
.provider
.raw_request("anvil_setBalance".into(), (test.router.address(), 1))
.await
.unwrap();
let tx = ethereum_primitives::deterministically_sign(test.escape_tx(Coin::Ether));
let receipt = ethereum_test_primitives::publish_tx(&test.provider, tx.clone()).await;
assert!(receipt.status());
let block = receipt.block_number.unwrap();
assert_eq!(
test.router.escapes(block ..= block).await.unwrap(),
vec![Escape { coin: Coin::Ether, amount: U256::from(1) }],
);
assert_eq!(test.provider.get_balance(test.router.address()).await.unwrap(), U256::from(0));
assert_eq!(
test.provider.get_balance(test.state.escaped_to.unwrap()).await.unwrap(),
U256::from(1)
);
}
// ERC20
{
let erc20 = Erc20::deploy(&test).await;
let coin = Coin::Erc20(erc20.address());
let amount = U256::from(1);
erc20.mint(&test, test.router.address(), amount).await;
let tx = ethereum_primitives::deterministically_sign(test.escape_tx(coin));
let receipt = ethereum_test_primitives::publish_tx(&test.provider, tx.clone()).await;
assert!(receipt.status());
let block = receipt.block_number.unwrap();
assert_eq!(test.router.escapes(block ..= block).await.unwrap(), vec![Escape { coin, amount }],);
assert_eq!(erc20.balance_of(&test, test.router.address()).await, U256::from(0));
assert_eq!(erc20.balance_of(&test, test.state.escaped_to.unwrap()).await, amount);
}
}

View file

@ -0,0 +1,182 @@
use std::collections::HashSet;
use alloy_core::primitives::U256;
use alloy_sol_types::SolCall;
use alloy_consensus::{TxLegacy, Signed};
use scale::Encode;
use serai_client::{
primitives::SeraiAddress,
in_instructions::primitives::{
InInstruction as SeraiInInstruction, RefundableInInstruction, Shorthand,
},
};
use ethereum_primitives::LogIndex;
use crate::{InInstruction, tests::*};
impl Test {
pub(crate) fn in_instruction() -> Shorthand {
Shorthand::Raw(RefundableInInstruction {
origin: None,
instruction: SeraiInInstruction::Transfer(SeraiAddress([0xff; 32])),
})
}
pub(crate) fn eth_in_instruction_tx(&self) -> (Coin, U256, Shorthand, TxLegacy) {
let coin = Coin::Ether;
let amount = U256::from(1);
let shorthand = Self::in_instruction();
let mut tx = self.router.in_instruction(coin, amount, &shorthand);
tx.gas_limit = 1_000_000;
tx.gas_price = 100_000_000_000;
(coin, amount, shorthand, tx)
}
pub(crate) async fn publish_in_instruction_tx(
&self,
tx: Signed<TxLegacy>,
coin: Coin,
amount: U256,
shorthand: &Shorthand,
) {
let receipt = ethereum_test_primitives::publish_tx(&self.provider, tx.clone()).await;
assert!(receipt.status());
let block = receipt.block_number.unwrap();
if matches!(coin, Coin::Erc20(_)) {
// If we don't whitelist this token, we shouldn't be yielded an InInstruction
let in_instructions =
self.router.in_instructions_unordered(block ..= block, &HashSet::new()).await.unwrap();
assert!(in_instructions.is_empty());
}
let in_instructions = self
.router
.in_instructions_unordered(
block ..= block,
&if let Coin::Erc20(token) = coin { HashSet::from([token]) } else { HashSet::new() },
)
.await
.unwrap();
assert_eq!(in_instructions.len(), 1);
let in_instruction_log_index = receipt.inner.logs().iter().find_map(|log| {
(log.topics().first() == Some(&crate::InInstructionEvent::SIGNATURE_HASH))
.then(|| log.log_index.unwrap())
});
// If this isn't an InInstruction event, it'll be a top-level transfer event
let log_index = in_instruction_log_index.unwrap_or(0);
assert_eq!(
in_instructions[0],
InInstruction {
id: LogIndex { block_hash: *receipt.block_hash.unwrap(), index_within_block: log_index },
transaction_hash: **tx.hash(),
from: tx.recover_signer().unwrap(),
coin,
amount,
data: shorthand.encode(),
}
);
}
}
#[tokio::test]
async fn test_no_in_instruction_before_key() {
let test = Test::new().await;
// We shouldn't be able to publish `InInstruction`s before publishing a key
let (_coin, _amount, _shorthand, tx) = test.eth_in_instruction_tx();
assert!(matches!(
test.call_and_decode_err(tx).await,
IRouterErrors::SeraiKeyWasNone(IRouter::SeraiKeyWasNone {})
));
}
#[tokio::test]
async fn test_eth_in_instruction() {
let mut test = Test::new().await;
test.confirm_next_serai_key().await;
let (coin, amount, shorthand, tx) = test.eth_in_instruction_tx();
// This should fail if the value mismatches the amount
{
let mut tx = tx.clone();
tx.value = U256::ZERO;
assert!(matches!(
test.call_and_decode_err(tx).await,
IRouterErrors::AmountMismatchesMsgValue(IRouter::AmountMismatchesMsgValue {})
));
}
let tx = ethereum_primitives::deterministically_sign(tx);
test.publish_in_instruction_tx(tx, coin, amount, &shorthand).await;
}
#[tokio::test]
async fn test_erc20_router_in_instruction() {
let mut test = Test::new().await;
test.confirm_next_serai_key().await;
let erc20 = Erc20::deploy(&test).await;
let coin = Coin::Erc20(erc20.address());
let amount = U256::from(1);
let shorthand = Test::in_instruction();
// The provided `in_instruction` function will use a top-level transfer for ERC20 InInstructions,
// so we have to manually write this call
let tx = TxLegacy {
chain_id: None,
nonce: 0,
gas_price: 100_000_000_000,
gas_limit: 1_000_000,
to: test.router.address().into(),
value: U256::ZERO,
input: crate::abi::inInstructionCall::new((coin.into(), amount, shorthand.encode().into()))
.abi_encode()
.into(),
};
// If no `approve` was granted, this should fail
assert!(matches!(
test.call_and_decode_err(tx.clone()).await,
IRouterErrors::TransferFromFailed(IRouter::TransferFromFailed {})
));
let tx = ethereum_primitives::deterministically_sign(tx);
{
let signer = tx.recover_signer().unwrap();
erc20.mint(&test, signer, amount).await;
erc20.approve(&test, signer, test.router.address(), amount).await;
}
test.publish_in_instruction_tx(tx, coin, amount, &shorthand).await;
}
#[tokio::test]
async fn test_erc20_top_level_transfer_in_instruction() {
let mut test = Test::new().await;
test.confirm_next_serai_key().await;
let erc20 = Erc20::deploy(&test).await;
let coin = Coin::Erc20(erc20.address());
let amount = U256::from(1);
let shorthand = Test::in_instruction();
let mut tx = test.router.in_instruction(coin, amount, &shorthand);
tx.gas_price = 100_000_000_000;
tx.gas_limit = 1_000_000;
let tx = ethereum_primitives::deterministically_sign(tx);
erc20.mint(&test, tx.recover_signer().unwrap(), amount).await;
test.publish_in_instruction_tx(tx, coin, amount, &shorthand).await;
}

View file

@ -1,4 +1,4 @@
use std::{sync::Arc, collections::HashSet};
use std::sync::Arc;
use rand_core::{RngCore, OsRng};
@ -20,16 +20,8 @@ use alloy_provider::{
use alloy_node_bindings::{Anvil, AnvilInstance};
use scale::Encode;
use serai_client::{
networks::ethereum::{ContractDeployment, Address as SeraiEthereumAddress},
primitives::SeraiAddress,
in_instructions::primitives::{
InInstruction as SeraiInInstruction, RefundableInInstruction, Shorthand,
},
};
use serai_client::networks::ethereum::{ContractDeployment, Address as SeraiEthereumAddress};
use ethereum_primitives::LogIndex;
use ethereum_schnorr::{PublicKey, Signature};
use ethereum_deployer::Deployer;
@ -37,16 +29,18 @@ use crate::{
_irouter_abi::IRouterWithoutCollisions::{
self as IRouter, IRouterWithoutCollisionsErrors as IRouterErrors,
},
Coin, InInstruction, OutInstructions, Router, Executed, Escape,
Coin, OutInstructions, Router, Executed, Escape,
};
mod constants;
mod create_address;
mod erc20;
use erc20::Erc20;
mod create_address;
mod in_instruction;
mod escape_hatch;
pub(crate) fn test_key() -> (Scalar, PublicKey) {
loop {
let key = Scalar::random(&mut OsRng);
@ -126,7 +120,13 @@ impl Test {
async fn new() -> Self {
// The following is explicitly only evaluated against the cancun network upgrade at this time
let anvil = Anvil::new().arg("--hardfork").arg("cancun").arg("--tracing").spawn();
let anvil = Anvil::new()
.arg("--hardfork")
.arg("cancun")
.arg("--tracing")
.arg("--no-request-size-limit")
.arg("--disable-block-gas-limit")
.spawn();
let provider = Arc::new(RootProvider::new(
ClientBuilder::default().transport(SimpleRequest::new(anvil.endpoint()), true),
@ -267,74 +267,6 @@ impl Test {
self.verify_state().await;
}
fn in_instruction() -> Shorthand {
Shorthand::Raw(RefundableInInstruction {
origin: None,
instruction: SeraiInInstruction::Transfer(SeraiAddress([0xff; 32])),
})
}
fn eth_in_instruction_tx(&self) -> (Coin, U256, Shorthand, TxLegacy) {
let coin = Coin::Ether;
let amount = U256::from(1);
let shorthand = Self::in_instruction();
let mut tx = self.router.in_instruction(coin, amount, &shorthand);
tx.gas_limit = 1_000_000;
tx.gas_price = 100_000_000_000;
(coin, amount, shorthand, tx)
}
async fn publish_in_instruction_tx(
&self,
tx: Signed<TxLegacy>,
coin: Coin,
amount: U256,
shorthand: &Shorthand,
) {
let receipt = ethereum_test_primitives::publish_tx(&self.provider, tx.clone()).await;
assert!(receipt.status());
let block = receipt.block_number.unwrap();
if matches!(coin, Coin::Erc20(_)) {
// If we don't whitelist this token, we shouldn't be yielded an InInstruction
let in_instructions =
self.router.in_instructions_unordered(block ..= block, &HashSet::new()).await.unwrap();
assert!(in_instructions.is_empty());
}
let in_instructions = self
.router
.in_instructions_unordered(
block ..= block,
&if let Coin::Erc20(token) = coin { HashSet::from([token]) } else { HashSet::new() },
)
.await
.unwrap();
assert_eq!(in_instructions.len(), 1);
let in_instruction_log_index = receipt.inner.logs().iter().find_map(|log| {
(log.topics().first() == Some(&crate::InInstructionEvent::SIGNATURE_HASH))
.then(|| log.log_index.unwrap())
});
// If this isn't an InInstruction event, it'll be a top-level transfer event
let log_index = in_instruction_log_index.unwrap_or(0);
assert_eq!(
in_instructions[0],
InInstruction {
id: LogIndex { block_hash: *receipt.block_hash.unwrap(), index_within_block: log_index },
transaction_hash: **tx.hash(),
from: tx.recover_signer().unwrap(),
coin,
amount,
data: shorthand.encode(),
}
);
}
fn execute_tx(
&self,
coin: Coin,
@ -371,7 +303,7 @@ impl Test {
results: Vec<bool>,
) -> (Signed<TxLegacy>, u64) {
let (message_hash, mut tx) = self.execute_tx(coin, fee, out_instructions);
tx.gas_limit = 1_000_000;
tx.gas_limit = 100_000_000;
tx.gas_price = 100_000_000_000;
let tx = ethereum_primitives::deterministically_sign(tx);
let receipt = ethereum_test_primitives::publish_tx(&self.provider, tx.clone()).await;
@ -396,52 +328,6 @@ impl Test {
(tx.clone(), receipt.gas_used)
}
fn escape_hatch_tx(&self, escape_to: Address) -> TxLegacy {
let msg = Router::escape_hatch_message(self.chain_id, self.state.next_nonce, escape_to);
let sig = sign(self.state.key.unwrap(), &msg);
let mut tx = self.router.escape_hatch(escape_to, &sig);
tx.gas_limit = Router::ESCAPE_HATCH_GAS + 5_000;
tx
}
async fn escape_hatch(&mut self) {
let mut escape_to = [0; 20];
OsRng.fill_bytes(&mut escape_to);
let escape_to = Address(escape_to.into());
// Set the code of the address to escape to so it isn't flagged as a non-contract
let () = self.provider.raw_request("anvil_setCode".into(), (escape_to, [0])).await.unwrap();
let mut tx = self.escape_hatch_tx(escape_to);
tx.gas_price = 100_000_000_000;
let tx = ethereum_primitives::deterministically_sign(tx);
let receipt = ethereum_test_primitives::publish_tx(&self.provider, tx.clone()).await;
assert!(receipt.status());
// This encodes an address which has 12 bytes of padding
assert_eq!(
CalldataAgnosticGas::calculate(tx.tx().input.as_ref(), 12, receipt.gas_used),
Router::ESCAPE_HATCH_GAS
);
{
let block = receipt.block_number.unwrap();
let executed = self.router.executed(block ..= block).await.unwrap();
assert_eq!(executed.len(), 1);
assert_eq!(executed[0], Executed::EscapeHatch { nonce: self.state.next_nonce, escape_to });
}
self.state.next_nonce += 1;
self.state.escaped_to = Some(escape_to);
self.verify_state().await;
}
fn escape_tx(&self, coin: Coin) -> TxLegacy {
let mut tx = self.router.escape(coin);
tx.gas_limit = 100_000;
tx.gas_price = 100_000_000_000;
tx
}
async fn gas_unused_by_calls(&self, tx: &Signed<TxLegacy>) -> u64 {
let mut unused_gas = 0;
@ -612,100 +498,6 @@ async fn test_update_serai_key() {
test.confirm_next_serai_key().await;
}
#[tokio::test]
async fn test_no_in_instruction_before_key() {
let test = Test::new().await;
// We shouldn't be able to publish `InInstruction`s before publishing a key
let (_coin, _amount, _shorthand, tx) = test.eth_in_instruction_tx();
assert!(matches!(
test.call_and_decode_err(tx).await,
IRouterErrors::SeraiKeyWasNone(IRouter::SeraiKeyWasNone {})
));
}
#[tokio::test]
async fn test_eth_in_instruction() {
let mut test = Test::new().await;
test.confirm_next_serai_key().await;
let (coin, amount, shorthand, tx) = test.eth_in_instruction_tx();
// This should fail if the value mismatches the amount
{
let mut tx = tx.clone();
tx.value = U256::ZERO;
assert!(matches!(
test.call_and_decode_err(tx).await,
IRouterErrors::AmountMismatchesMsgValue(IRouter::AmountMismatchesMsgValue {})
));
}
let tx = ethereum_primitives::deterministically_sign(tx);
test.publish_in_instruction_tx(tx, coin, amount, &shorthand).await;
}
#[tokio::test]
async fn test_erc20_router_in_instruction() {
let mut test = Test::new().await;
test.confirm_next_serai_key().await;
let erc20 = Erc20::deploy(&test).await;
let coin = Coin::Erc20(erc20.address());
let amount = U256::from(1);
let shorthand = Test::in_instruction();
// The provided `in_instruction` function will use a top-level transfer for ERC20 InInstructions,
// so we have to manually write this call
let tx = TxLegacy {
chain_id: None,
nonce: 0,
gas_price: 100_000_000_000,
gas_limit: 1_000_000,
to: test.router.address().into(),
value: U256::ZERO,
input: crate::abi::inInstructionCall::new((coin.into(), amount, shorthand.encode().into()))
.abi_encode()
.into(),
};
// If no `approve` was granted, this should fail
assert!(matches!(
test.call_and_decode_err(tx.clone()).await,
IRouterErrors::TransferFromFailed(IRouter::TransferFromFailed {})
));
let tx = ethereum_primitives::deterministically_sign(tx);
{
let signer = tx.recover_signer().unwrap();
erc20.mint(&test, signer, amount).await;
erc20.approve(&test, signer, test.router.address(), amount).await;
}
test.publish_in_instruction_tx(tx, coin, amount, &shorthand).await;
}
#[tokio::test]
async fn test_erc20_top_level_transfer_in_instruction() {
let mut test = Test::new().await;
test.confirm_next_serai_key().await;
let erc20 = Erc20::deploy(&test).await;
let coin = Coin::Erc20(erc20.address());
let amount = U256::from(1);
let shorthand = Test::in_instruction();
let mut tx = test.router.in_instruction(coin, amount, &shorthand);
tx.gas_price = 100_000_000_000;
tx.gas_limit = 1_000_000;
let tx = ethereum_primitives::deterministically_sign(tx);
erc20.mint(&test, tx.recover_signer().unwrap(), amount).await;
test.publish_in_instruction_tx(tx, coin, amount, &shorthand).await;
}
#[tokio::test]
async fn test_execute_arbitrary_code() {
let test = Test::new().await;
@ -966,123 +758,6 @@ async fn test_result_decoding() {
assert!(gas_used <= gas);
}
#[tokio::test]
async fn test_escape_hatch() {
let mut test = Test::new().await;
test.confirm_next_serai_key().await;
// Queue another key so the below test cases can run
test.update_serai_key().await;
{
// The zero address should be invalid to escape to
assert!(matches!(
test.call_and_decode_err(test.escape_hatch_tx([0; 20].into())).await,
IRouterErrors::InvalidEscapeAddress(IRouter::InvalidEscapeAddress {})
));
// Empty addresses should be invalid to escape to
assert!(matches!(
test.call_and_decode_err(test.escape_hatch_tx([1; 20].into())).await,
IRouterErrors::EscapeAddressWasNotAContract(IRouter::EscapeAddressWasNotAContract {})
));
// Non-empty addresses without code should be invalid to escape to
let tx = ethereum_primitives::deterministically_sign(TxLegacy {
to: Address([1; 20].into()).into(),
gas_limit: 21_000,
gas_price: 100_000_000_000,
value: U256::from(1),
..Default::default()
});
let receipt = ethereum_test_primitives::publish_tx(&test.provider, tx.clone()).await;
assert!(receipt.status());
assert!(matches!(
test.call_and_decode_err(test.escape_hatch_tx([1; 20].into())).await,
IRouterErrors::EscapeAddressWasNotAContract(IRouter::EscapeAddressWasNotAContract {})
));
// Escaping at this point in time should fail
assert!(matches!(
test.call_and_decode_err(test.router.escape(Coin::Ether)).await,
IRouterErrors::EscapeHatchNotInvoked(IRouter::EscapeHatchNotInvoked {})
));
}
// Invoke the escape hatch
test.escape_hatch().await;
// Now that the escape hatch has been invoked, all of the following calls should fail
{
assert!(matches!(
test.call_and_decode_err(test.update_serai_key_tx().1).await,
IRouterErrors::EscapeHatchInvoked(IRouter::EscapeHatchInvoked {})
));
assert!(matches!(
test.call_and_decode_err(test.confirm_next_serai_key_tx()).await,
IRouterErrors::EscapeHatchInvoked(IRouter::EscapeHatchInvoked {})
));
assert!(matches!(
test.call_and_decode_err(test.eth_in_instruction_tx().3).await,
IRouterErrors::EscapeHatchInvoked(IRouter::EscapeHatchInvoked {})
));
assert!(matches!(
test
.call_and_decode_err(test.execute_tx(Coin::Ether, U256::from(0), [].as_slice().into()).1)
.await,
IRouterErrors::EscapeHatchInvoked(IRouter::EscapeHatchInvoked {})
));
// We reject further attempts to update the escape hatch to prevent the last key from being
// able to switch from the honest escape hatch to siphoning via a malicious escape hatch (such
// as after the validators represented unstake)
assert!(matches!(
test.call_and_decode_err(test.escape_hatch_tx(test.state.escaped_to.unwrap())).await,
IRouterErrors::EscapeHatchInvoked(IRouter::EscapeHatchInvoked {})
));
}
// Check the escape fn itself
// ETH
{
let () = test
.provider
.raw_request("anvil_setBalance".into(), (test.router.address(), 1))
.await
.unwrap();
let tx = ethereum_primitives::deterministically_sign(test.escape_tx(Coin::Ether));
let receipt = ethereum_test_primitives::publish_tx(&test.provider, tx.clone()).await;
assert!(receipt.status());
let block = receipt.block_number.unwrap();
assert_eq!(
test.router.escapes(block ..= block).await.unwrap(),
vec![Escape { coin: Coin::Ether, amount: U256::from(1) }],
);
assert_eq!(test.provider.get_balance(test.router.address()).await.unwrap(), U256::from(0));
assert_eq!(
test.provider.get_balance(test.state.escaped_to.unwrap()).await.unwrap(),
U256::from(1)
);
}
// ERC20
{
let erc20 = Erc20::deploy(&test).await;
let coin = Coin::Erc20(erc20.address());
let amount = U256::from(1);
erc20.mint(&test, test.router.address(), amount).await;
let tx = ethereum_primitives::deterministically_sign(test.escape_tx(coin));
let receipt = ethereum_test_primitives::publish_tx(&test.provider, tx.clone()).await;
assert!(receipt.status());
let block = receipt.block_number.unwrap();
assert_eq!(test.router.escapes(block ..= block).await.unwrap(), vec![Escape { coin, amount }],);
assert_eq!(erc20.balance_of(&test, test.router.address()).await, U256::from(0));
assert_eq!(erc20.balance_of(&test, test.state.escaped_to.unwrap()).await, amount);
}
}
#[tokio::test]
async fn test_reentrancy() {
let mut test = Test::new().await;
@ -1121,3 +796,69 @@ async fn test_reentrancy() {
// (which this isn't a counter-example to) and is validated to be the worst-case, but is peculiar
assert!(gas_used <= gas);
}
#[tokio::test]
async fn fuzz_test_out_instructions_gas() {
for _ in 0 .. 10 {
let mut test = Test::new().await;
test.confirm_next_serai_key().await;
// Generate a random OutInstructions
let mut out_instructions = vec![];
let mut prior_addresses = vec![];
for _ in 0 .. (OsRng.next_u64() % 50) {
let amount_out = U256::from(OsRng.next_u64() % 2);
if (OsRng.next_u64() % 2) == 1 {
let mut code = return_true_code();
// Extend this with random data to make it somewhat random, despite the constant returned
// code (though the estimator will never run the initcode and realize that)
let ext = vec![0; usize::try_from(OsRng.next_u64() % 400).unwrap()];
code.extend(&ext);
out_instructions.push((
SeraiEthereumAddress::Contract(ContractDeployment::new(100_000, ext).unwrap()),
amount_out,
));
} else {
// Occasionally reuse addresses (cold/warm slots)
let address = if (!prior_addresses.is_empty()) && ((OsRng.next_u64() % 2) == 1) {
prior_addresses[usize::try_from(
OsRng.next_u64() % u64::try_from(prior_addresses.len()).unwrap(),
)
.unwrap()]
} else {
let mut rand_address = [0; 20];
OsRng.fill_bytes(&mut rand_address);
prior_addresses.push(rand_address);
rand_address
};
out_instructions.push((SeraiEthereumAddress::Address(address), amount_out));
}
}
let out_instructions = OutInstructions::from(out_instructions.as_slice());
// Randomly decide the coin
let coin = if (OsRng.next_u64() % 2) == 1 {
let () = test
.provider
.raw_request("anvil_setBalance".into(), (test.router.address(), 1_000_000_000))
.await
.unwrap();
Coin::Ether
} else {
let erc20 = Erc20::deploy(&test).await;
erc20.mint(&test, test.router.address(), U256::from(1_000_000_000)).await;
Coin::Erc20(erc20.address())
};
let fee_per_gas = U256::from(OsRng.next_u64() % 10);
let gas = test.router.execute_gas(coin, fee_per_gas, &out_instructions);
let fee = U256::from(gas) * fee_per_gas;
// All of these should have succeeded
let (tx, gas_used) =
test.execute(coin, fee, out_instructions.clone(), vec![true; out_instructions.0.len()]).await;
let unused_gas = test.gas_unused_by_calls(&tx).await;
assert_eq!(gas_used + unused_gas, gas);
}
}