Update the flow for completed signing processes

Now, an on-chain transaction exists. This resolves some ambiguities and
provides greater coordination.
This commit is contained in:
Luke Parker 2023-07-14 14:05:12 -04:00
parent 5424886d63
commit 807ec30762
No known key found for this signature in database
6 changed files with 55 additions and 11 deletions

View file

@ -190,7 +190,6 @@ pub async fn scan_tributaries<D: Db, Pro: Processors, P: P2p>(
}
}
#[allow(clippy::type_complexity)]
pub async fn heartbeat_tributaries<D: Db, P: P2p>(
p2p: P,
tributaries: Arc<RwLock<Tributaries<D, P>>>,
@ -217,7 +216,6 @@ pub async fn heartbeat_tributaries<D: Db, P: P2p>(
}
}
#[allow(clippy::type_complexity)]
pub async fn handle_p2p<D: Db, P: P2p>(
our_key: <Ristretto as Ciphersuite>::G,
p2p: P,
@ -364,7 +362,6 @@ pub async fn publish_transaction<D: Db, P: P2p>(
}
}
#[allow(clippy::type_complexity)]
pub async fn handle_processors<D: Db, Pro: Processors, P: P2p>(
mut db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,

View file

@ -232,6 +232,7 @@ pub enum Transaction {
SignPreprocess(SignData),
SignShare(SignData),
SignCompleted([u8; 32], Vec<u8>, Signed),
}
impl ReadWrite for Transaction {
@ -304,6 +305,19 @@ impl ReadWrite for Transaction {
6 => SignData::read(reader).map(Transaction::SignPreprocess),
7 => SignData::read(reader).map(Transaction::SignShare),
8 => {
let mut plan = [0; 32];
reader.read_exact(&mut plan)?;
let mut tx_len = [0];
reader.read_exact(&mut tx_len)?;
let mut tx = vec![0; usize::from(tx_len[0])];
reader.read_exact(&mut tx)?;
let signed = Signed::read(reader)?;
Ok(Transaction::SignCompleted(plan, tx, signed))
}
_ => Err(io::Error::new(io::ErrorKind::Other, "invalid transaction type")),
}
}
@ -376,6 +390,13 @@ impl ReadWrite for Transaction {
writer.write_all(&[7])?;
data.write(writer)
}
Transaction::SignCompleted(plan, tx, signed) => {
writer.write_all(&[8])?;
writer.write_all(plan)?;
writer.write_all(&[u8::try_from(tx.len()).expect("tx hash length exceed 255 bytes")])?;
writer.write_all(tx)?;
signed.write(writer)
}
}
}
}
@ -394,6 +415,7 @@ impl TransactionTrait for Transaction {
Transaction::SignPreprocess(data) => TransactionKind::Signed(&data.signed),
Transaction::SignShare(data) => TransactionKind::Signed(&data.signed),
Transaction::SignCompleted(_, _, signed) => TransactionKind::Signed(signed),
}
}
@ -451,6 +473,7 @@ impl Transaction {
Transaction::SignPreprocess(ref mut data) => &mut data.signed,
Transaction::SignShare(ref mut data) => &mut data.signed,
Transaction::SignCompleted(_, _, ref mut signed) => signed,
}
}

View file

@ -297,6 +297,7 @@ async fn handle_block<D: Db, Pro: Processors>(
.await;
}
}
Transaction::SignCompleted(_, _, _) => todo!(),
}
TributaryDb::<D>::handle_event(&mut txn, hash, event_id);

View file

@ -1,11 +1,15 @@
use core::fmt::Debug;
use std::{io, collections::HashMap};
use zeroize::Zeroize;
use thiserror::Error;
use blake2::{Digest, Blake2b512};
use ciphersuite::{group::GroupEncoding, Ciphersuite, Ristretto};
use ciphersuite::{
group::{Group, GroupEncoding},
Ciphersuite, Ristretto,
};
use schnorr::SchnorrSignature;
use crate::{TRANSACTION_SIZE_LIMIT, ReadWrite};
@ -48,12 +52,23 @@ impl ReadWrite for Signed {
Err(io::Error::new(io::ErrorKind::Other, "nonce exceeded limit"))?;
}
let signature = SchnorrSignature::<Ristretto>::read(reader)?;
let mut signature = SchnorrSignature::<Ristretto>::read(reader)?;
if signature.R.is_identity().into() {
// Anyone malicious could remove this and try to find zero signatures
// We should never produce zero signatures though meaning this should never come up
// If it does somehow come up, this is a decent courtesy
signature.zeroize();
Err(io::Error::new(io::ErrorKind::Other, "signature nonce was identity"))?;
}
Ok(Signed { signer, nonce, signature })
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
// This is either an invalid signature or a private key leak
if self.signature.R.is_identity().into() {
Err(io::Error::new(io::ErrorKind::Other, "signature nonce was identity"))?;
}
writer.write_all(&self.signer.to_bytes())?;
writer.write_all(&self.nonce.to_le_bytes())?;
self.signature.write(writer)

View file

@ -36,5 +36,10 @@ transaction containing the signed batch to the Serai blockchain.
# Sign Completed
On `sign::ProcessorMessage::Completed`, the coordinator broadcasts the
contained information to all validators.
On `sign::ProcessorMessage::Completed`, the coordinator makes a tributary
transaction containing the transaction hash the signing process was supposedly
completed with.
Due to rushing adversaries, the actual transaction completing the plan may be
distinct on-chain. These messages solely exist to coordinate the signing
process, not to determine chain state.

View file

@ -98,7 +98,6 @@ pub mod sign {
// Signed share for the specified signing protocol.
Share { id: SignId, share: Vec<u8> },
// Completed a signing protocol already.
// TODO: Move this to SignId
Completed { key: Vec<u8>, id: [u8; 32], tx: Vec<u8> },
}
}
@ -246,9 +245,13 @@ impl CoordinatorMessage {
sign::CoordinatorMessage::Preprocesses { id, .. } => (0, bincode::serialize(id).unwrap()),
sign::CoordinatorMessage::Shares { id, .. } => (1, bincode::serialize(id).unwrap()),
sign::CoordinatorMessage::Reattempt { id } => (2, bincode::serialize(id).unwrap()),
// TODO: This doesn't embed the attempt. Accordingly, multiple distinct completions will
// be flattened. This isn't acceptable.
sign::CoordinatorMessage::Completed { id, .. } => (3, id.to_vec()),
// The coordinator should report all reported completions to the processor
// Accordingly, the intent is a combination of plan ID and actual TX
// While transaction alone may suffice, that doesn't cover cross-chain TX ID conflicts,
// which are possible
sign::CoordinatorMessage::Completed { id, tx, .. } => {
(3, bincode::serialize(&(id, tx)).unwrap())
}
};
let mut res = vec![COORDINATOR_UID, TYPE_SIGN_UID, sub];