mirror of
https://github.com/serai-dex/serai.git
synced 2025-01-10 21:04:40 +00:00
Add non-transaction-chaining scheduler
This commit is contained in:
parent
0c1aec29bb
commit
6e9cb74022
17 changed files with 951 additions and 145 deletions
1
.github/workflows/tests.yml
vendored
1
.github/workflows/tests.yml
vendored
|
@ -45,6 +45,7 @@ jobs:
|
|||
-p serai-processor-scanner \
|
||||
-p serai-processor-scheduler-primitives \
|
||||
-p serai-processor-utxo-scheduler-primitives \
|
||||
-p serai-processor-utxo-scheduler \
|
||||
-p serai-processor-transaction-chaining-scheduler \
|
||||
-p serai-processor \
|
||||
-p tendermint-machine \
|
||||
|
|
16
Cargo.lock
generated
16
Cargo.lock
generated
|
@ -8733,11 +8733,27 @@ dependencies = [
|
|||
"serai-processor-utxo-scheduler-primitives",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "serai-processor-utxo-scheduler"
|
||||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"borsh",
|
||||
"group",
|
||||
"parity-scale-codec",
|
||||
"serai-db",
|
||||
"serai-primitives",
|
||||
"serai-processor-primitives",
|
||||
"serai-processor-scanner",
|
||||
"serai-processor-scheduler-primitives",
|
||||
"serai-processor-utxo-scheduler-primitives",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "serai-processor-utxo-scheduler-primitives"
|
||||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"async-trait",
|
||||
"borsh",
|
||||
"serai-primitives",
|
||||
"serai-processor-primitives",
|
||||
"serai-processor-scanner",
|
||||
|
|
|
@ -77,6 +77,7 @@ members = [
|
|||
"processor/scanner",
|
||||
"processor/scheduler/primitives",
|
||||
"processor/scheduler/utxo/primitives",
|
||||
"processor/scheduler/utxo/standard",
|
||||
"processor/scheduler/utxo/transaction-chaining",
|
||||
"processor",
|
||||
|
||||
|
|
|
@ -52,6 +52,7 @@ exceptions = [
|
|||
{ allow = ["AGPL-3.0"], name = "serai-processor-scanner" },
|
||||
{ allow = ["AGPL-3.0"], name = "serai-processor-scheduler-primitives" },
|
||||
{ allow = ["AGPL-3.0"], name = "serai-processor-utxo-scheduler-primitives" },
|
||||
{ allow = ["AGPL-3.0"], name = "serai-processor-standard-scheduler" },
|
||||
{ allow = ["AGPL-3.0"], name = "serai-processor-transaction-chaining-scheduler" },
|
||||
{ allow = ["AGPL-3.0"], name = "serai-processor" },
|
||||
|
||||
|
|
|
@ -3,12 +3,22 @@ use std::io;
|
|||
|
||||
use group::GroupEncoding;
|
||||
|
||||
use borsh::{BorshSerialize, BorshDeserialize};
|
||||
|
||||
use serai_primitives::{ExternalAddress, Balance};
|
||||
|
||||
use crate::Id;
|
||||
|
||||
/// An address on the external network.
|
||||
pub trait Address: Send + Sync + Clone + Into<ExternalAddress> + TryFrom<ExternalAddress> {
|
||||
pub trait Address:
|
||||
Send
|
||||
+ Sync
|
||||
+ Clone
|
||||
+ Into<ExternalAddress>
|
||||
+ TryFrom<ExternalAddress>
|
||||
+ BorshSerialize
|
||||
+ BorshDeserialize
|
||||
{
|
||||
/// Write this address.
|
||||
fn write(&self, writer: &mut impl io::Write) -> io::Result<()>;
|
||||
/// Read an address.
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
use std::io;
|
||||
|
||||
use scale::{Encode, Decode, IoReader};
|
||||
use borsh::{BorshSerialize, BorshDeserialize};
|
||||
|
||||
use serai_primitives::{Balance, Data};
|
||||
use serai_coins_primitives::OutInstructionWithBalance;
|
||||
|
@ -8,7 +9,7 @@ use serai_coins_primitives::OutInstructionWithBalance;
|
|||
use crate::Address;
|
||||
|
||||
/// A payment to fulfill.
|
||||
#[derive(Clone)]
|
||||
#[derive(Clone, BorshSerialize, BorshDeserialize)]
|
||||
pub struct Payment<A: Address> {
|
||||
address: A,
|
||||
balance: Balance,
|
||||
|
|
|
@ -13,6 +13,9 @@ publish = false
|
|||
all-features = true
|
||||
rustdoc-args = ["--cfg", "docsrs"]
|
||||
|
||||
[package.metadata.cargo-machete]
|
||||
ignored = ["scale", "borsh"]
|
||||
|
||||
[lints]
|
||||
workspace = true
|
||||
|
||||
|
|
|
@ -19,6 +19,8 @@ workspace = true
|
|||
[dependencies]
|
||||
async-trait = { version = "0.1", default-features = false }
|
||||
|
||||
borsh = { version = "1", default-features = false, features = ["std", "derive", "de_strict_order"] }
|
||||
|
||||
serai-primitives = { path = "../../../../substrate/primitives", default-features = false, features = ["std"] }
|
||||
|
||||
primitives = { package = "serai-processor-primitives", path = "../../../primitives" }
|
||||
|
|
|
@ -8,6 +8,9 @@ use primitives::{ReceivedOutput, Payment};
|
|||
use scanner::{ScannerFeed, KeyFor, AddressFor, OutputFor, EventualityFor, BlockFor};
|
||||
use scheduler_primitives::*;
|
||||
|
||||
mod tree;
|
||||
pub use tree::*;
|
||||
|
||||
/// A planned transaction.
|
||||
pub struct PlannedTransaction<S: ScannerFeed, ST: SignableTransaction, A> {
|
||||
/// The signable transaction.
|
||||
|
@ -18,6 +21,23 @@ pub struct PlannedTransaction<S: ScannerFeed, ST: SignableTransaction, A> {
|
|||
pub auxilliary: A,
|
||||
}
|
||||
|
||||
/// A planned transaction which was created via amortizing the fee.
|
||||
pub struct AmortizePlannedTransaction<S: ScannerFeed, ST: SignableTransaction, A> {
|
||||
/// The amounts the included payments were worth.
|
||||
///
|
||||
/// If the payments passed as an argument are sorted from highest to lowest valued, these `n`
|
||||
/// amounts will be for the first `n` payments.
|
||||
pub effected_payments: Vec<Amount>,
|
||||
/// Whether or not the planned transaction had a change output.
|
||||
pub has_change: bool,
|
||||
/// The signable transaction.
|
||||
pub signable: ST,
|
||||
/// The Eventuality to watch for.
|
||||
pub eventuality: EventualityFor<S>,
|
||||
/// The auxilliary data for this transaction.
|
||||
pub auxilliary: A,
|
||||
}
|
||||
|
||||
/// An object able to plan a transaction.
|
||||
#[async_trait::async_trait]
|
||||
pub trait TransactionPlanner<S: ScannerFeed, A>: 'static + Send + Sync {
|
||||
|
@ -60,7 +80,8 @@ pub trait TransactionPlanner<S: ScannerFeed, A>: 'static + Send + Sync {
|
|||
/// This must only require the same fee as would be returned by `calculate_fee`. The caller is
|
||||
/// trusted to maintain `sum(inputs) - sum(payments) >= if change.is_some() { DUST } else { 0 }`.
|
||||
///
|
||||
/// `change` will always be an address belonging to the Serai network.
|
||||
/// `change` will always be an address belonging to the Serai network. If it is `Some`, a change
|
||||
/// output must be created.
|
||||
fn plan(
|
||||
fee_rate: Self::FeeRate,
|
||||
inputs: Vec<OutputFor<S>>,
|
||||
|
@ -82,7 +103,7 @@ pub trait TransactionPlanner<S: ScannerFeed, A>: 'static + Send + Sync {
|
|||
inputs: Vec<OutputFor<S>>,
|
||||
mut payments: Vec<Payment<AddressFor<S>>>,
|
||||
mut change: Option<KeyFor<S>>,
|
||||
) -> Option<PlannedTransaction<S, Self::SignableTransaction, A>> {
|
||||
) -> Option<AmortizePlannedTransaction<S, Self::SignableTransaction, A>> {
|
||||
// If there's no change output, we can't recoup any operating costs we would amortize
|
||||
// We also don't have any losses if the inputs are written off/the change output is reduced
|
||||
let mut operating_costs_if_no_change = 0;
|
||||
|
@ -192,6 +213,48 @@ pub trait TransactionPlanner<S: ScannerFeed, A>: 'static + Send + Sync {
|
|||
}
|
||||
|
||||
// Because we amortized, or accrued as operating costs, the fee, make the transaction
|
||||
Some(Self::plan(fee_rate, inputs, payments, change))
|
||||
let effected_payments = payments.iter().map(|payment| payment.balance().amount).collect();
|
||||
let has_change = change.is_some();
|
||||
let PlannedTransaction { signable, eventuality, auxilliary } =
|
||||
Self::plan(fee_rate, inputs, payments, change);
|
||||
Some(AmortizePlannedTransaction {
|
||||
effected_payments,
|
||||
has_change,
|
||||
signable,
|
||||
eventuality,
|
||||
auxilliary,
|
||||
})
|
||||
}
|
||||
|
||||
/// Create a tree to fulfill a set of payments.
|
||||
///
|
||||
/// Returns a `TreeTransaction` whose children (and arbitrary children of children) fulfill all
|
||||
/// these payments. This tree root will be able to be made with a change output.
|
||||
fn tree(payments: &[Payment<AddressFor<S>>]) -> TreeTransaction<AddressFor<S>> {
|
||||
// This variable is for the current layer of the tree being built
|
||||
let mut tree = Vec::with_capacity(payments.len().div_ceil(Self::MAX_OUTPUTS));
|
||||
|
||||
// Push the branches for the leaves (the payments out)
|
||||
for payments in payments.chunks(Self::MAX_OUTPUTS) {
|
||||
let value = payments.iter().map(|payment| payment.balance().amount.0).sum::<u64>();
|
||||
tree.push(TreeTransaction::<AddressFor<S>>::Leaves { payments: payments.to_vec(), value });
|
||||
}
|
||||
|
||||
// While we haven't calculated a tree root, or the tree root doesn't support a change output,
|
||||
// keep working
|
||||
while (tree.len() != 1) || (tree[0].children() == Self::MAX_OUTPUTS) {
|
||||
let mut branch_layer = vec![];
|
||||
for children in tree.chunks(Self::MAX_OUTPUTS) {
|
||||
branch_layer.push(TreeTransaction::<AddressFor<S>>::Branch {
|
||||
children: children.to_vec(),
|
||||
value: children.iter().map(TreeTransaction::value).sum(),
|
||||
});
|
||||
}
|
||||
tree = branch_layer;
|
||||
}
|
||||
assert_eq!(tree.len(), 1);
|
||||
let tree_root = tree.remove(0);
|
||||
assert!((tree_root.children() + 1) <= Self::MAX_OUTPUTS);
|
||||
tree_root
|
||||
}
|
||||
}
|
||||
|
|
146
processor/scheduler/utxo/primitives/src/tree.rs
Normal file
146
processor/scheduler/utxo/primitives/src/tree.rs
Normal file
|
@ -0,0 +1,146 @@
|
|||
use borsh::{BorshSerialize, BorshDeserialize};
|
||||
|
||||
use serai_primitives::{Coin, Amount, Balance};
|
||||
|
||||
use primitives::{Address, Payment};
|
||||
use scanner::ScannerFeed;
|
||||
|
||||
/// A transaction within a tree to fulfill payments.
|
||||
#[derive(Clone, BorshSerialize, BorshDeserialize)]
|
||||
pub enum TreeTransaction<A: Address> {
|
||||
/// A transaction for the leaves (payments) of the tree.
|
||||
Leaves {
|
||||
/// The payments within this transaction.
|
||||
payments: Vec<Payment<A>>,
|
||||
/// The sum value of the payments.
|
||||
value: u64,
|
||||
},
|
||||
/// A transaction for the branches of the tree.
|
||||
Branch {
|
||||
/// The child transactions.
|
||||
children: Vec<Self>,
|
||||
/// The sum value of the child transactions.
|
||||
value: u64,
|
||||
},
|
||||
}
|
||||
impl<A: Address> TreeTransaction<A> {
|
||||
/// How many children this transaction has.
|
||||
///
|
||||
/// A child is defined as any dependent, whether payment or transaction.
|
||||
pub fn children(&self) -> usize {
|
||||
match self {
|
||||
Self::Leaves { payments, .. } => payments.len(),
|
||||
Self::Branch { children, .. } => children.len(),
|
||||
}
|
||||
}
|
||||
|
||||
/// The value this transaction wants to spend.
|
||||
pub fn value(&self) -> u64 {
|
||||
match self {
|
||||
Self::Leaves { value, .. } | Self::Branch { value, .. } => *value,
|
||||
}
|
||||
}
|
||||
|
||||
/// The payments to make to enable this transaction's children.
|
||||
///
|
||||
/// A child is defined as any dependent, whether payment or transaction.
|
||||
///
|
||||
/// The input value given to this transaction MUST be less than or equal to the desired value.
|
||||
/// The difference will be amortized over all dependents.
|
||||
///
|
||||
/// Returns None if no payments should be made. Returns Some containing a non-empty Vec if any
|
||||
/// payments should be made.
|
||||
pub fn payments<S: ScannerFeed>(
|
||||
&self,
|
||||
coin: Coin,
|
||||
branch_address: &A,
|
||||
input_value: u64,
|
||||
) -> Option<Vec<Payment<A>>> {
|
||||
// Fetch the amounts for the payments we'll make
|
||||
let mut amounts: Vec<_> = match self {
|
||||
Self::Leaves { payments, .. } => payments
|
||||
.iter()
|
||||
.map(|payment| {
|
||||
assert_eq!(payment.balance().coin, coin);
|
||||
Some(payment.balance().amount.0)
|
||||
})
|
||||
.collect(),
|
||||
Self::Branch { children, .. } => children.iter().map(|child| Some(child.value())).collect(),
|
||||
};
|
||||
|
||||
// We need to reduce them so their sum is our input value
|
||||
assert!(input_value <= self.value());
|
||||
let amount_to_amortize = self.value() - input_value;
|
||||
|
||||
// If any payments won't survive the reduction, set them to None
|
||||
let mut amortized = 0;
|
||||
'outer: while amounts.iter().any(Option::is_some) && (amortized < amount_to_amortize) {
|
||||
let adjusted_fee = amount_to_amortize - amortized;
|
||||
let amounts_len =
|
||||
u64::try_from(amounts.iter().filter(|amount| amount.is_some()).count()).unwrap();
|
||||
let per_payment_fee_check = adjusted_fee.div_ceil(amounts_len);
|
||||
|
||||
// Check each amount to see if it's not viable
|
||||
let mut i = 0;
|
||||
while i < amounts.len() {
|
||||
if let Some(amount) = amounts[i] {
|
||||
if amount.saturating_sub(per_payment_fee_check) < S::dust(coin).0 {
|
||||
amounts[i] = None;
|
||||
amortized += amount;
|
||||
// If this amount wasn't viable, re-run with the new fee/amortization amounts
|
||||
continue 'outer;
|
||||
}
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
|
||||
// Now that we have the payments which will survive, reduce them
|
||||
for (i, amount) in amounts.iter_mut().enumerate() {
|
||||
if let Some(amount) = amount {
|
||||
*amount -= adjusted_fee / amounts_len;
|
||||
if i < usize::try_from(adjusted_fee % amounts_len).unwrap() {
|
||||
*amount -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// Now that we have the reduced amounts, create the payments
|
||||
let payments: Vec<_> = match self {
|
||||
Self::Leaves { payments, .. } => {
|
||||
payments
|
||||
.iter()
|
||||
.zip(amounts)
|
||||
.filter_map(|(payment, amount)| {
|
||||
amount.map(|amount| {
|
||||
// The existing payment, with the new amount
|
||||
Payment::new(
|
||||
payment.address().clone(),
|
||||
Balance { coin, amount: Amount(amount) },
|
||||
payment.data().clone(),
|
||||
)
|
||||
})
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
Self::Branch { .. } => {
|
||||
amounts
|
||||
.into_iter()
|
||||
.filter_map(|amount| {
|
||||
amount.map(|amount| {
|
||||
// A branch output with the new amount
|
||||
Payment::new(branch_address.clone(), Balance { coin, amount: Amount(amount) }, None)
|
||||
})
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
};
|
||||
|
||||
// Use None for vec![] so we never actually use vec![]
|
||||
if payments.is_empty() {
|
||||
None?;
|
||||
}
|
||||
Some(payments)
|
||||
}
|
||||
}
|
35
processor/scheduler/utxo/standard/Cargo.toml
Normal file
35
processor/scheduler/utxo/standard/Cargo.toml
Normal file
|
@ -0,0 +1,35 @@
|
|||
[package]
|
||||
name = "serai-processor-utxo-scheduler"
|
||||
version = "0.1.0"
|
||||
description = "Scheduler for UTXO networks for the Serai processor"
|
||||
license = "AGPL-3.0-only"
|
||||
repository = "https://github.com/serai-dex/serai/tree/develop/processor/scheduler/utxo/standard"
|
||||
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
|
||||
keywords = []
|
||||
edition = "2021"
|
||||
publish = false
|
||||
|
||||
[package.metadata.docs.rs]
|
||||
all-features = true
|
||||
rustdoc-args = ["--cfg", "docsrs"]
|
||||
|
||||
[package.metadata.cargo-machete]
|
||||
ignored = ["scale", "borsh"]
|
||||
|
||||
[lints]
|
||||
workspace = true
|
||||
|
||||
[dependencies]
|
||||
group = { version = "0.13", default-features = false }
|
||||
|
||||
scale = { package = "parity-scale-codec", version = "3", default-features = false, features = ["std"] }
|
||||
borsh = { version = "1", default-features = false, features = ["std", "derive", "de_strict_order"] }
|
||||
|
||||
serai-primitives = { path = "../../../../substrate/primitives", default-features = false, features = ["std"] }
|
||||
|
||||
serai-db = { path = "../../../../common/db" }
|
||||
|
||||
primitives = { package = "serai-processor-primitives", path = "../../../primitives" }
|
||||
scanner = { package = "serai-processor-scanner", path = "../../../scanner" }
|
||||
scheduler-primitives = { package = "serai-processor-scheduler-primitives", path = "../../primitives" }
|
||||
utxo-scheduler-primitives = { package = "serai-processor-utxo-scheduler-primitives", path = "../primitives" }
|
15
processor/scheduler/utxo/standard/LICENSE
Normal file
15
processor/scheduler/utxo/standard/LICENSE
Normal file
|
@ -0,0 +1,15 @@
|
|||
AGPL-3.0-only license
|
||||
|
||||
Copyright (c) 2024 Luke Parker
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License Version 3 as
|
||||
published by the Free Software Foundation.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
17
processor/scheduler/utxo/standard/README.md
Normal file
17
processor/scheduler/utxo/standard/README.md
Normal file
|
@ -0,0 +1,17 @@
|
|||
# UTXO Scheduler
|
||||
|
||||
A scheduler of transactions for networks premised on the UTXO model.
|
||||
|
||||
### Design
|
||||
|
||||
The scheduler is designed to achieve fulfillment of all expected payments with
|
||||
an `O(1)` delay (regardless of prior scheduler state), `O(log n)` time, and
|
||||
`O(log(n) + n)` computational complexity.
|
||||
|
||||
For the time/computational complexity, we use a tree to fulfill payments.
|
||||
This quickly gives us the ability to make as many outputs as necessary
|
||||
(regardless of per-transaction output limits) and only has the latency of
|
||||
including a chain of `O(log n)` transactions on-chain. The only computational
|
||||
overhead is in creating the transactions which are branches in the tree.
|
||||
Since we split off the root of the tree from a master output, the delay to start
|
||||
fulfillment is the delay for the master output to re-appear on-chain.
|
113
processor/scheduler/utxo/standard/src/db.rs
Normal file
113
processor/scheduler/utxo/standard/src/db.rs
Normal file
|
@ -0,0 +1,113 @@
|
|||
use core::marker::PhantomData;
|
||||
|
||||
use group::GroupEncoding;
|
||||
|
||||
use serai_primitives::{Coin, Amount, Balance};
|
||||
|
||||
use borsh::BorshDeserialize;
|
||||
use serai_db::{Get, DbTxn, create_db, db_channel};
|
||||
|
||||
use primitives::{Payment, ReceivedOutput};
|
||||
use utxo_scheduler_primitives::TreeTransaction;
|
||||
use scanner::{ScannerFeed, KeyFor, AddressFor, OutputFor};
|
||||
|
||||
create_db! {
|
||||
UtxoScheduler {
|
||||
OperatingCosts: (coin: Coin) -> Amount,
|
||||
SerializedOutputs: (key: &[u8], coin: Coin) -> Vec<u8>,
|
||||
SerializedQueuedPayments: (key: &[u8], coin: Coin) -> Vec<u8>,
|
||||
}
|
||||
}
|
||||
|
||||
db_channel! {
|
||||
UtxoScheduler {
|
||||
PendingBranch: (key: &[u8], balance: Balance) -> Vec<u8>,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) struct Db<S: ScannerFeed>(PhantomData<S>);
|
||||
impl<S: ScannerFeed> Db<S> {
|
||||
pub(crate) fn operating_costs(getter: &impl Get, coin: Coin) -> Amount {
|
||||
OperatingCosts::get(getter, coin).unwrap_or(Amount(0))
|
||||
}
|
||||
pub(crate) fn set_operating_costs(txn: &mut impl DbTxn, coin: Coin, amount: Amount) {
|
||||
OperatingCosts::set(txn, coin, &amount)
|
||||
}
|
||||
|
||||
pub(crate) fn outputs(
|
||||
getter: &impl Get,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
) -> Option<Vec<OutputFor<S>>> {
|
||||
let buf = SerializedOutputs::get(getter, key.to_bytes().as_ref(), coin)?;
|
||||
let mut buf = buf.as_slice();
|
||||
|
||||
let mut res = Vec::with_capacity(buf.len() / 128);
|
||||
while !buf.is_empty() {
|
||||
res.push(OutputFor::<S>::read(&mut buf).unwrap());
|
||||
}
|
||||
Some(res)
|
||||
}
|
||||
pub(crate) fn set_outputs(
|
||||
txn: &mut impl DbTxn,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
outputs: &[OutputFor<S>],
|
||||
) {
|
||||
let mut buf = Vec::with_capacity(outputs.len() * 128);
|
||||
for output in outputs {
|
||||
output.write(&mut buf).unwrap();
|
||||
}
|
||||
SerializedOutputs::set(txn, key.to_bytes().as_ref(), coin, &buf);
|
||||
}
|
||||
pub(crate) fn del_outputs(txn: &mut impl DbTxn, key: KeyFor<S>, coin: Coin) {
|
||||
SerializedOutputs::del(txn, key.to_bytes().as_ref(), coin);
|
||||
}
|
||||
|
||||
pub(crate) fn queued_payments(
|
||||
getter: &impl Get,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
) -> Option<Vec<Payment<AddressFor<S>>>> {
|
||||
let buf = SerializedQueuedPayments::get(getter, key.to_bytes().as_ref(), coin)?;
|
||||
let mut buf = buf.as_slice();
|
||||
|
||||
let mut res = Vec::with_capacity(buf.len() / 128);
|
||||
while !buf.is_empty() {
|
||||
res.push(Payment::read(&mut buf).unwrap());
|
||||
}
|
||||
Some(res)
|
||||
}
|
||||
pub(crate) fn set_queued_payments(
|
||||
txn: &mut impl DbTxn,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
queued: &[Payment<AddressFor<S>>],
|
||||
) {
|
||||
let mut buf = Vec::with_capacity(queued.len() * 128);
|
||||
for queued in queued {
|
||||
queued.write(&mut buf).unwrap();
|
||||
}
|
||||
SerializedQueuedPayments::set(txn, key.to_bytes().as_ref(), coin, &buf);
|
||||
}
|
||||
pub(crate) fn del_queued_payments(txn: &mut impl DbTxn, key: KeyFor<S>, coin: Coin) {
|
||||
SerializedQueuedPayments::del(txn, key.to_bytes().as_ref(), coin);
|
||||
}
|
||||
|
||||
pub(crate) fn queue_pending_branch(
|
||||
txn: &mut impl DbTxn,
|
||||
key: KeyFor<S>,
|
||||
balance: Balance,
|
||||
child: &TreeTransaction<AddressFor<S>>,
|
||||
) {
|
||||
PendingBranch::send(txn, key.to_bytes().as_ref(), balance, &borsh::to_vec(child).unwrap())
|
||||
}
|
||||
pub(crate) fn take_pending_branch(
|
||||
txn: &mut impl DbTxn,
|
||||
key: KeyFor<S>,
|
||||
balance: Balance,
|
||||
) -> Option<TreeTransaction<AddressFor<S>>> {
|
||||
PendingBranch::try_recv(txn, key.to_bytes().as_ref(), balance)
|
||||
.map(|bytes| TreeTransaction::<AddressFor<S>>::deserialize(&mut bytes.as_slice()).unwrap())
|
||||
}
|
||||
}
|
508
processor/scheduler/utxo/standard/src/lib.rs
Normal file
508
processor/scheduler/utxo/standard/src/lib.rs
Normal file
|
@ -0,0 +1,508 @@
|
|||
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
|
||||
#![doc = include_str!("../README.md")]
|
||||
#![deny(missing_docs)]
|
||||
|
||||
use core::marker::PhantomData;
|
||||
use std::collections::HashMap;
|
||||
|
||||
use group::GroupEncoding;
|
||||
|
||||
use serai_primitives::{Coin, Amount, Balance};
|
||||
|
||||
use serai_db::DbTxn;
|
||||
|
||||
use primitives::{ReceivedOutput, Payment};
|
||||
use scanner::{
|
||||
LifetimeStage, ScannerFeed, KeyFor, AddressFor, OutputFor, EventualityFor, BlockFor,
|
||||
SchedulerUpdate, Scheduler as SchedulerTrait,
|
||||
};
|
||||
use scheduler_primitives::*;
|
||||
use utxo_scheduler_primitives::*;
|
||||
|
||||
mod db;
|
||||
use db::Db;
|
||||
|
||||
/// A scheduler of transactions for networks premised on the UTXO model.
|
||||
pub struct Scheduler<S: ScannerFeed, P: TransactionPlanner<S, ()>>(PhantomData<S>, PhantomData<P>);
|
||||
|
||||
impl<S: ScannerFeed, P: TransactionPlanner<S, ()>> Scheduler<S, P> {
|
||||
fn aggregate_inputs(
|
||||
txn: &mut impl DbTxn,
|
||||
block: &BlockFor<S>,
|
||||
key_for_change: KeyFor<S>,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
) -> Vec<EventualityFor<S>> {
|
||||
let mut eventualities = vec![];
|
||||
|
||||
let mut operating_costs = Db::<S>::operating_costs(txn, coin).0;
|
||||
let mut outputs = Db::<S>::outputs(txn, key, coin).unwrap();
|
||||
outputs.sort_by_key(|output| output.balance().amount.0);
|
||||
while outputs.len() > P::MAX_INPUTS {
|
||||
let to_aggregate = outputs.drain(.. P::MAX_INPUTS).collect::<Vec<_>>();
|
||||
|
||||
let Some(planned) = P::plan_transaction_with_fee_amortization(
|
||||
&mut operating_costs,
|
||||
P::fee_rate(block, coin),
|
||||
to_aggregate,
|
||||
vec![],
|
||||
Some(key_for_change),
|
||||
) else {
|
||||
continue;
|
||||
};
|
||||
|
||||
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
|
||||
eventualities.push(planned.eventuality);
|
||||
}
|
||||
|
||||
Db::<S>::set_outputs(txn, key, coin, &outputs);
|
||||
Db::<S>::set_operating_costs(txn, coin, Amount(operating_costs));
|
||||
eventualities
|
||||
}
|
||||
|
||||
fn fulfillable_payments(
|
||||
txn: &mut impl DbTxn,
|
||||
operating_costs: &mut u64,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
value_of_outputs: u64,
|
||||
) -> Vec<Payment<AddressFor<S>>> {
|
||||
// Fetch all payments for this key
|
||||
let mut payments = Db::<S>::queued_payments(txn, key, coin).unwrap();
|
||||
if payments.is_empty() {
|
||||
return vec![];
|
||||
}
|
||||
|
||||
loop {
|
||||
// inputs must be >= (payments - operating costs)
|
||||
// Accordingly, (inputs + operating costs) must be >= payments
|
||||
let value_fulfillable = value_of_outputs + *operating_costs;
|
||||
|
||||
// Drop to just the payments we can currently fulfill
|
||||
{
|
||||
let mut can_handle = 0;
|
||||
let mut value_used = 0;
|
||||
for payment in &payments {
|
||||
value_used += payment.balance().amount.0;
|
||||
if value_fulfillable < value_used {
|
||||
break;
|
||||
}
|
||||
can_handle += 1;
|
||||
}
|
||||
|
||||
let remaining_payments = payments.drain(can_handle ..).collect::<Vec<_>>();
|
||||
// Restore the rest to the database
|
||||
Db::<S>::set_queued_payments(txn, key, coin, &remaining_payments);
|
||||
}
|
||||
|
||||
// If these payments are worth less than the operating costs, immediately drop them
|
||||
let payments_value = payments.iter().map(|payment| payment.balance().amount.0).sum::<u64>();
|
||||
if payments_value <= *operating_costs {
|
||||
*operating_costs -= payments_value;
|
||||
Db::<S>::set_operating_costs(txn, coin, Amount(*operating_costs));
|
||||
|
||||
// Reset payments to the queued payments
|
||||
payments = Db::<S>::queued_payments(txn, key, coin).unwrap();
|
||||
// If there's no more payments, stop looking for which payments we should fulfill
|
||||
if payments.is_empty() {
|
||||
return vec![];
|
||||
}
|
||||
// Find which of these we should handle
|
||||
continue;
|
||||
}
|
||||
|
||||
return payments;
|
||||
}
|
||||
}
|
||||
|
||||
fn queue_branches(
|
||||
txn: &mut impl DbTxn,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
effected_payments: Vec<Amount>,
|
||||
tx: TreeTransaction<AddressFor<S>>,
|
||||
) {
|
||||
match tx {
|
||||
TreeTransaction::Leaves { .. } => {}
|
||||
TreeTransaction::Branch { mut children, .. } => {
|
||||
children.sort_by_key(TreeTransaction::value);
|
||||
children.reverse();
|
||||
|
||||
/*
|
||||
This may only be a subset of payments but it'll be the originally-highest-valued
|
||||
payments. `zip` will truncate to the first children which will be the highest-valued
|
||||
children thanks to our sort.
|
||||
*/
|
||||
for (amount, child) in effected_payments.into_iter().zip(children) {
|
||||
Db::<S>::queue_pending_branch(txn, key, Balance { coin, amount }, &child);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn handle_branch(
|
||||
txn: &mut impl DbTxn,
|
||||
block: &BlockFor<S>,
|
||||
eventualities: &mut Vec<EventualityFor<S>>,
|
||||
output: OutputFor<S>,
|
||||
tx: TreeTransaction<AddressFor<S>>,
|
||||
) -> bool {
|
||||
let key = output.key();
|
||||
let coin = output.balance().coin;
|
||||
let Some(payments) = tx.payments::<S>(coin, &P::branch_address(key), output.balance().amount.0)
|
||||
else {
|
||||
// If this output has become too small to satisfy this branch, drop it
|
||||
return false;
|
||||
};
|
||||
|
||||
let Some(planned) = P::plan_transaction_with_fee_amortization(
|
||||
// Uses 0 as there's no operating costs to incur/amortize here
|
||||
&mut 0,
|
||||
P::fee_rate(block, coin),
|
||||
vec![output],
|
||||
payments,
|
||||
None,
|
||||
) else {
|
||||
// This Branch isn't viable, so drop it (and its children)
|
||||
return false;
|
||||
};
|
||||
|
||||
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
|
||||
eventualities.push(planned.eventuality);
|
||||
|
||||
Self::queue_branches(txn, key, coin, planned.effected_payments, tx);
|
||||
|
||||
true
|
||||
}
|
||||
|
||||
fn step(
|
||||
txn: &mut impl DbTxn,
|
||||
active_keys: &[(KeyFor<S>, LifetimeStage)],
|
||||
block: &BlockFor<S>,
|
||||
key: KeyFor<S>,
|
||||
) -> Vec<EventualityFor<S>> {
|
||||
let mut eventualities = vec![];
|
||||
|
||||
let key_for_change = match active_keys[0].1 {
|
||||
LifetimeStage::ActiveYetNotReporting => {
|
||||
panic!("expected to fulfill payments despite not reporting for the oldest key")
|
||||
}
|
||||
LifetimeStage::Active => active_keys[0].0,
|
||||
LifetimeStage::UsingNewForChange | LifetimeStage::Forwarding | LifetimeStage::Finishing => {
|
||||
active_keys[1].0
|
||||
}
|
||||
};
|
||||
let branch_address = P::branch_address(key);
|
||||
|
||||
'coin: for coin in S::NETWORK.coins() {
|
||||
let coin = *coin;
|
||||
|
||||
// Perform any input aggregation we should
|
||||
eventualities.append(&mut Self::aggregate_inputs(txn, block, key_for_change, key, coin));
|
||||
|
||||
// Fetch the operating costs/outputs
|
||||
let mut operating_costs = Db::<S>::operating_costs(txn, coin).0;
|
||||
let outputs = Db::<S>::outputs(txn, key, coin).unwrap();
|
||||
|
||||
// Fetch the fulfillable payments
|
||||
let payments = Self::fulfillable_payments(
|
||||
txn,
|
||||
&mut operating_costs,
|
||||
key,
|
||||
coin,
|
||||
outputs.iter().map(|output| output.balance().amount.0).sum(),
|
||||
);
|
||||
if payments.is_empty() {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create a tree to fulfill the payments
|
||||
let mut tree = vec![P::tree(&payments)];
|
||||
|
||||
// Create the transaction for the root of the tree
|
||||
// Try creating this transaction twice, once with a change output and once with increased
|
||||
// operating costs to ensure a change output (as necessary to meet the requirements of the
|
||||
// scanner API)
|
||||
let mut planned_outer = None;
|
||||
for i in 0 .. 2 {
|
||||
let Some(planned) = P::plan_transaction_with_fee_amortization(
|
||||
&mut operating_costs,
|
||||
P::fee_rate(block, coin),
|
||||
outputs.clone(),
|
||||
tree[0]
|
||||
.payments::<S>(coin, &branch_address, tree[0].value())
|
||||
.expect("payments were dropped despite providing an input of the needed value"),
|
||||
Some(key_for_change),
|
||||
) else {
|
||||
// This should trip on the first iteration or not at all
|
||||
assert_eq!(i, 0);
|
||||
// This doesn't have inputs even worth aggregating so drop the entire tree
|
||||
Db::<S>::set_operating_costs(txn, coin, Amount(operating_costs));
|
||||
continue 'coin;
|
||||
};
|
||||
|
||||
// If this doesn't have a change output, increase operating costs and try again
|
||||
if !planned.has_change {
|
||||
/*
|
||||
Since we'll create a change output if it's worth at least dust, amortizing dust from
|
||||
the payments should solve this. If the new transaction can't afford those operating
|
||||
costs, then the payments should be amortized out, causing there to be a change or no
|
||||
transaction at all.
|
||||
*/
|
||||
operating_costs += S::dust(coin).0;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Since this had a change output, move forward with it
|
||||
planned_outer = Some(planned);
|
||||
break;
|
||||
}
|
||||
let Some(planned) = planned_outer else {
|
||||
panic!("couldn't create a tree root with a change output")
|
||||
};
|
||||
Db::<S>::set_operating_costs(txn, coin, Amount(operating_costs));
|
||||
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
|
||||
eventualities.push(planned.eventuality);
|
||||
|
||||
// Now save the next layer of the tree to the database
|
||||
// We'll execute it when it appears
|
||||
Self::queue_branches(txn, key, coin, planned.effected_payments, tree.remove(0));
|
||||
}
|
||||
|
||||
eventualities
|
||||
}
|
||||
|
||||
fn flush_outputs(
|
||||
txn: &mut impl DbTxn,
|
||||
eventualities: &mut HashMap<Vec<u8>, Vec<EventualityFor<S>>>,
|
||||
block: &BlockFor<S>,
|
||||
from: KeyFor<S>,
|
||||
to: KeyFor<S>,
|
||||
coin: Coin,
|
||||
) {
|
||||
let from_bytes = from.to_bytes().as_ref().to_vec();
|
||||
// Ensure our inputs are aggregated
|
||||
eventualities
|
||||
.entry(from_bytes.clone())
|
||||
.or_insert(vec![])
|
||||
.append(&mut Self::aggregate_inputs(txn, block, to, from, coin));
|
||||
|
||||
// Now that our inputs are aggregated, transfer all of them to the new key
|
||||
let mut operating_costs = Db::<S>::operating_costs(txn, coin).0;
|
||||
let outputs = Db::<S>::outputs(txn, from, coin).unwrap();
|
||||
if outputs.is_empty() {
|
||||
return;
|
||||
}
|
||||
let planned = P::plan_transaction_with_fee_amortization(
|
||||
&mut operating_costs,
|
||||
P::fee_rate(block, coin),
|
||||
outputs,
|
||||
vec![],
|
||||
Some(to),
|
||||
);
|
||||
Db::<S>::set_operating_costs(txn, coin, Amount(operating_costs));
|
||||
let Some(planned) = planned else { return };
|
||||
|
||||
TransactionsToSign::<P::SignableTransaction>::send(txn, &from, &planned.signable);
|
||||
eventualities.get_mut(&from_bytes).unwrap().push(planned.eventuality);
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: ScannerFeed, P: TransactionPlanner<S, ()>> SchedulerTrait<S> for Scheduler<S, P> {
|
||||
fn activate_key(txn: &mut impl DbTxn, key: KeyFor<S>) {
|
||||
for coin in S::NETWORK.coins() {
|
||||
assert!(Db::<S>::outputs(txn, key, *coin).is_none());
|
||||
Db::<S>::set_outputs(txn, key, *coin, &[]);
|
||||
assert!(Db::<S>::queued_payments(txn, key, *coin).is_none());
|
||||
Db::<S>::set_queued_payments(txn, key, *coin, &[]);
|
||||
}
|
||||
}
|
||||
|
||||
fn flush_key(
|
||||
txn: &mut impl DbTxn,
|
||||
block: &BlockFor<S>,
|
||||
retiring_key: KeyFor<S>,
|
||||
new_key: KeyFor<S>,
|
||||
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
|
||||
let mut eventualities = HashMap::new();
|
||||
for coin in S::NETWORK.coins() {
|
||||
// Move the payments to the new key
|
||||
{
|
||||
let still_queued = Db::<S>::queued_payments(txn, retiring_key, *coin).unwrap();
|
||||
let mut new_queued = Db::<S>::queued_payments(txn, new_key, *coin).unwrap();
|
||||
|
||||
let mut queued = still_queued;
|
||||
queued.append(&mut new_queued);
|
||||
|
||||
Db::<S>::set_queued_payments(txn, retiring_key, *coin, &[]);
|
||||
Db::<S>::set_queued_payments(txn, new_key, *coin, &queued);
|
||||
}
|
||||
|
||||
// Move the outputs to the new key
|
||||
Self::flush_outputs(txn, &mut eventualities, block, retiring_key, new_key, *coin);
|
||||
}
|
||||
eventualities
|
||||
}
|
||||
|
||||
fn retire_key(txn: &mut impl DbTxn, key: KeyFor<S>) {
|
||||
for coin in S::NETWORK.coins() {
|
||||
assert!(Db::<S>::outputs(txn, key, *coin).unwrap().is_empty());
|
||||
Db::<S>::del_outputs(txn, key, *coin);
|
||||
assert!(Db::<S>::queued_payments(txn, key, *coin).unwrap().is_empty());
|
||||
Db::<S>::del_queued_payments(txn, key, *coin);
|
||||
}
|
||||
}
|
||||
|
||||
fn update(
|
||||
txn: &mut impl DbTxn,
|
||||
block: &BlockFor<S>,
|
||||
active_keys: &[(KeyFor<S>, LifetimeStage)],
|
||||
update: SchedulerUpdate<S>,
|
||||
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
|
||||
let mut eventualities = HashMap::new();
|
||||
|
||||
// Accumulate the new outputs
|
||||
{
|
||||
let mut outputs_by_key = HashMap::new();
|
||||
for output in update.outputs() {
|
||||
// If this aligns for a branch, handle it
|
||||
if let Some(branch) = Db::<S>::take_pending_branch(txn, output.key(), output.balance()) {
|
||||
if Self::handle_branch(
|
||||
txn,
|
||||
block,
|
||||
eventualities.entry(output.key().to_bytes().as_ref().to_vec()).or_insert(vec![]),
|
||||
output.clone(),
|
||||
branch,
|
||||
) {
|
||||
// If we could use it for a branch, we do and move on
|
||||
// Else, we let it be accumulated by the standard accumulation code
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
let coin = output.balance().coin;
|
||||
outputs_by_key
|
||||
// Index by key and coin
|
||||
.entry((output.key().to_bytes().as_ref().to_vec(), coin))
|
||||
// If we haven't accumulated here prior, read the outputs from the database
|
||||
.or_insert_with(|| (output.key(), Db::<S>::outputs(txn, output.key(), coin).unwrap()))
|
||||
.1
|
||||
.push(output.clone());
|
||||
}
|
||||
// Write the outputs back to the database
|
||||
for ((_key_vec, coin), (key, outputs)) in outputs_by_key {
|
||||
Db::<S>::set_outputs(txn, key, coin, &outputs);
|
||||
}
|
||||
}
|
||||
|
||||
// Fulfill the payments we prior couldn't
|
||||
for (key, _stage) in active_keys {
|
||||
eventualities
|
||||
.entry(key.to_bytes().as_ref().to_vec())
|
||||
.or_insert(vec![])
|
||||
.append(&mut Self::step(txn, active_keys, block, *key));
|
||||
}
|
||||
|
||||
// If this key has been flushed, forward all outputs
|
||||
match active_keys[0].1 {
|
||||
LifetimeStage::ActiveYetNotReporting |
|
||||
LifetimeStage::Active |
|
||||
LifetimeStage::UsingNewForChange => {}
|
||||
LifetimeStage::Forwarding | LifetimeStage::Finishing => {
|
||||
for coin in S::NETWORK.coins() {
|
||||
Self::flush_outputs(
|
||||
txn,
|
||||
&mut eventualities,
|
||||
block,
|
||||
active_keys[0].0,
|
||||
active_keys[1].0,
|
||||
*coin,
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Create the transactions for the forwards/burns
|
||||
{
|
||||
let mut planned_txs = vec![];
|
||||
for forward in update.forwards() {
|
||||
let key = forward.key();
|
||||
|
||||
assert_eq!(active_keys.len(), 2);
|
||||
assert_eq!(active_keys[0].1, LifetimeStage::Forwarding);
|
||||
assert_eq!(active_keys[1].1, LifetimeStage::Active);
|
||||
let forward_to_key = active_keys[1].0;
|
||||
|
||||
let Some(plan) = P::plan_transaction_with_fee_amortization(
|
||||
// This uses 0 for the operating costs as we don't incur any here
|
||||
// If the output can't pay for itself to be forwarded, we simply drop it
|
||||
&mut 0,
|
||||
P::fee_rate(block, forward.balance().coin),
|
||||
vec![forward.clone()],
|
||||
vec![Payment::new(P::forwarding_address(forward_to_key), forward.balance(), None)],
|
||||
None,
|
||||
) else {
|
||||
continue;
|
||||
};
|
||||
planned_txs.push((key, plan));
|
||||
}
|
||||
for to_return in update.returns() {
|
||||
let key = to_return.output().key();
|
||||
let out_instruction =
|
||||
Payment::new(to_return.address().clone(), to_return.output().balance(), None);
|
||||
let Some(plan) = P::plan_transaction_with_fee_amortization(
|
||||
// This uses 0 for the operating costs as we don't incur any here
|
||||
// If the output can't pay for itself to be returned, we simply drop it
|
||||
&mut 0,
|
||||
P::fee_rate(block, out_instruction.balance().coin),
|
||||
vec![to_return.output().clone()],
|
||||
vec![out_instruction],
|
||||
None,
|
||||
) else {
|
||||
continue;
|
||||
};
|
||||
planned_txs.push((key, plan));
|
||||
}
|
||||
|
||||
for (key, planned_tx) in planned_txs {
|
||||
// Send the transactions off for signing
|
||||
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned_tx.signable);
|
||||
|
||||
// Insert the Eventualities into the result
|
||||
eventualities.get_mut(key.to_bytes().as_ref()).unwrap().push(planned_tx.eventuality);
|
||||
}
|
||||
|
||||
eventualities
|
||||
}
|
||||
}
|
||||
|
||||
fn fulfill(
|
||||
txn: &mut impl DbTxn,
|
||||
block: &BlockFor<S>,
|
||||
active_keys: &[(KeyFor<S>, LifetimeStage)],
|
||||
payments: Vec<Payment<AddressFor<S>>>,
|
||||
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
|
||||
// Find the key to filfill these payments with
|
||||
let fulfillment_key = match active_keys[0].1 {
|
||||
LifetimeStage::ActiveYetNotReporting => {
|
||||
panic!("expected to fulfill payments despite not reporting for the oldest key")
|
||||
}
|
||||
LifetimeStage::Active | LifetimeStage::UsingNewForChange => active_keys[0].0,
|
||||
LifetimeStage::Forwarding | LifetimeStage::Finishing => active_keys[1].0,
|
||||
};
|
||||
|
||||
// Queue the payments for this key
|
||||
for coin in S::NETWORK.coins() {
|
||||
let mut queued_payments = Db::<S>::queued_payments(txn, fulfillment_key, *coin).unwrap();
|
||||
queued_payments
|
||||
.extend(payments.iter().filter(|payment| payment.balance().coin == *coin).cloned());
|
||||
Db::<S>::set_queued_payments(txn, fulfillment_key, *coin, &queued_payments);
|
||||
}
|
||||
|
||||
// Handle the queued payments
|
||||
HashMap::from([(
|
||||
fulfillment_key.to_bytes().as_ref().to_vec(),
|
||||
Self::step(txn, active_keys, block, fulfillment_key),
|
||||
)])
|
||||
}
|
||||
}
|
|
@ -9,7 +9,7 @@ to build and sign a transaction spending it.
|
|||
|
||||
The scheduler is designed to achieve fulfillment of all expected payments with
|
||||
an `O(1)` delay (regardless of prior scheduler state), `O(log n)` time, and
|
||||
`O(n)` computational complexity.
|
||||
`O(log(n) + n)` computational complexity.
|
||||
|
||||
Due to the ability to chain transactions, we can immediately plan/sign dependent
|
||||
transactions. For the time/computational complexity, we use a tree to fulfill
|
||||
|
|
|
@ -7,7 +7,7 @@ use std::collections::HashMap;
|
|||
|
||||
use group::GroupEncoding;
|
||||
|
||||
use serai_primitives::{Coin, Amount, Balance};
|
||||
use serai_primitives::{Coin, Amount};
|
||||
|
||||
use serai_db::DbTxn;
|
||||
|
||||
|
@ -22,114 +22,6 @@ use utxo_scheduler_primitives::*;
|
|||
mod db;
|
||||
use db::Db;
|
||||
|
||||
#[derive(Clone)]
|
||||
enum TreeTransaction<S: ScannerFeed> {
|
||||
Leaves { payments: Vec<Payment<AddressFor<S>>>, value: u64 },
|
||||
Branch { children: Vec<Self>, value: u64 },
|
||||
}
|
||||
impl<S: ScannerFeed> TreeTransaction<S> {
|
||||
fn children(&self) -> usize {
|
||||
match self {
|
||||
Self::Leaves { payments, .. } => payments.len(),
|
||||
Self::Branch { children, .. } => children.len(),
|
||||
}
|
||||
}
|
||||
fn value(&self) -> u64 {
|
||||
match self {
|
||||
Self::Leaves { value, .. } | Self::Branch { value, .. } => *value,
|
||||
}
|
||||
}
|
||||
fn payments(
|
||||
&self,
|
||||
coin: Coin,
|
||||
branch_address: &AddressFor<S>,
|
||||
input_value: u64,
|
||||
) -> Option<Vec<Payment<AddressFor<S>>>> {
|
||||
// Fetch the amounts for the payments we'll make
|
||||
let mut amounts: Vec<_> = match self {
|
||||
Self::Leaves { payments, .. } => {
|
||||
payments.iter().map(|payment| Some(payment.balance().amount.0)).collect()
|
||||
}
|
||||
Self::Branch { children, .. } => children.iter().map(|child| Some(child.value())).collect(),
|
||||
};
|
||||
|
||||
// We need to reduce them so their sum is our input value
|
||||
assert!(input_value <= self.value());
|
||||
let amount_to_amortize = self.value() - input_value;
|
||||
|
||||
// If any payments won't survive the reduction, set them to None
|
||||
let mut amortized = 0;
|
||||
'outer: while amounts.iter().any(Option::is_some) && (amortized < amount_to_amortize) {
|
||||
let adjusted_fee = amount_to_amortize - amortized;
|
||||
let amounts_len =
|
||||
u64::try_from(amounts.iter().filter(|amount| amount.is_some()).count()).unwrap();
|
||||
let per_payment_fee_check = adjusted_fee.div_ceil(amounts_len);
|
||||
|
||||
// Check each amount to see if it's not viable
|
||||
let mut i = 0;
|
||||
while i < amounts.len() {
|
||||
if let Some(amount) = amounts[i] {
|
||||
if amount.saturating_sub(per_payment_fee_check) < S::dust(coin).0 {
|
||||
amounts[i] = None;
|
||||
amortized += amount;
|
||||
// If this amount wasn't viable, re-run with the new fee/amortization amounts
|
||||
continue 'outer;
|
||||
}
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
|
||||
// Now that we have the payments which will survive, reduce them
|
||||
for (i, amount) in amounts.iter_mut().enumerate() {
|
||||
if let Some(amount) = amount {
|
||||
*amount -= adjusted_fee / amounts_len;
|
||||
if i < usize::try_from(adjusted_fee % amounts_len).unwrap() {
|
||||
*amount -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// Now that we have the reduced amounts, create the payments
|
||||
let payments: Vec<_> = match self {
|
||||
Self::Leaves { payments, .. } => {
|
||||
payments
|
||||
.iter()
|
||||
.zip(amounts)
|
||||
.filter_map(|(payment, amount)| {
|
||||
amount.map(|amount| {
|
||||
// The existing payment, with the new amount
|
||||
Payment::new(
|
||||
payment.address().clone(),
|
||||
Balance { coin, amount: Amount(amount) },
|
||||
payment.data().clone(),
|
||||
)
|
||||
})
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
Self::Branch { .. } => {
|
||||
amounts
|
||||
.into_iter()
|
||||
.filter_map(|amount| {
|
||||
amount.map(|amount| {
|
||||
// A branch output with the new amount
|
||||
Payment::new(branch_address.clone(), Balance { coin, amount: Amount(amount) }, None)
|
||||
})
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
};
|
||||
|
||||
// Use None for vec![] so we never actually use vec![]
|
||||
if payments.is_empty() {
|
||||
None?;
|
||||
}
|
||||
Some(payments)
|
||||
}
|
||||
}
|
||||
|
||||
/// The outputs which will be effected by a PlannedTransaction and received by Serai.
|
||||
pub struct EffectedReceivedOutputs<S: ScannerFeed>(Vec<OutputFor<S>>);
|
||||
|
||||
|
@ -306,30 +198,8 @@ impl<S: ScannerFeed, P: TransactionPlanner<S, EffectedReceivedOutputs<S>>> Sched
|
|||
assert!(Db::<S>::queued_payments(txn, key, coin).unwrap().is_empty());
|
||||
}
|
||||
|
||||
// Create a tree to fulfillthe payments
|
||||
// This variable is for the current layer of the tree being built
|
||||
let mut tree = Vec::with_capacity(payments.len().div_ceil(P::MAX_OUTPUTS));
|
||||
|
||||
// Push the branches for the leaves (the payments out)
|
||||
for payments in payments.chunks(P::MAX_OUTPUTS) {
|
||||
let value = payments.iter().map(|payment| payment.balance().amount.0).sum::<u64>();
|
||||
tree.push(TreeTransaction::<S>::Leaves { payments: payments.to_vec(), value });
|
||||
}
|
||||
|
||||
// While we haven't calculated a tree root, or the tree root doesn't support a change output,
|
||||
// keep working
|
||||
while (tree.len() != 1) || (tree[0].children() == P::MAX_OUTPUTS) {
|
||||
let mut branch_layer = vec![];
|
||||
for children in tree.chunks(P::MAX_OUTPUTS) {
|
||||
branch_layer.push(TreeTransaction::<S>::Branch {
|
||||
children: children.to_vec(),
|
||||
value: children.iter().map(TreeTransaction::value).sum(),
|
||||
});
|
||||
}
|
||||
tree = branch_layer;
|
||||
}
|
||||
assert_eq!(tree.len(), 1);
|
||||
assert!((tree[0].children() + 1) <= P::MAX_OUTPUTS);
|
||||
// Create a tree to fulfill the payments
|
||||
let mut tree = vec![P::tree(&payments)];
|
||||
|
||||
// Create the transaction for the root of the tree
|
||||
let mut branch_outputs = {
|
||||
|
@ -343,7 +213,7 @@ impl<S: ScannerFeed, P: TransactionPlanner<S, EffectedReceivedOutputs<S>>> Sched
|
|||
P::fee_rate(block, coin),
|
||||
outputs.clone(),
|
||||
tree[0]
|
||||
.payments(coin, &branch_address, tree[0].value())
|
||||
.payments::<S>(coin, &branch_address, tree[0].value())
|
||||
.expect("payments were dropped despite providing an input of the needed value"),
|
||||
Some(key_for_change),
|
||||
) else {
|
||||
|
@ -355,7 +225,7 @@ impl<S: ScannerFeed, P: TransactionPlanner<S, EffectedReceivedOutputs<S>>> Sched
|
|||
};
|
||||
|
||||
// If this doesn't have a change output, increase operating costs and try again
|
||||
if !planned.auxilliary.0.iter().any(|output| output.kind() == OutputType::Change) {
|
||||
if !planned.has_change {
|
||||
/*
|
||||
Since we'll create a change output if it's worth at least dust, amortizing dust from
|
||||
the payments should solve this. If the new transaction can't afford those operating
|
||||
|
@ -399,11 +269,13 @@ impl<S: ScannerFeed, P: TransactionPlanner<S, EffectedReceivedOutputs<S>>> Sched
|
|||
TreeTransaction::Branch { children, .. } => children,
|
||||
};
|
||||
while !tree.is_empty() {
|
||||
// Sort the branch outputs by their value
|
||||
// Sort the branch outputs by their value (high to low)
|
||||
branch_outputs.sort_by_key(|a| a.balance().amount.0);
|
||||
branch_outputs.reverse();
|
||||
// Sort the transactions we should create by their value so they share an order with the
|
||||
// branch outputs
|
||||
tree.sort_by_key(TreeTransaction::value);
|
||||
tree.reverse();
|
||||
|
||||
// If we dropped any Branch outputs, drop the associated children
|
||||
tree.truncate(branch_outputs.len());
|
||||
|
@ -417,7 +289,8 @@ impl<S: ScannerFeed, P: TransactionPlanner<S, EffectedReceivedOutputs<S>>> Sched
|
|||
for (branch_output, tx) in branch_outputs_for_this_layer.into_iter().zip(this_layer) {
|
||||
assert_eq!(branch_output.kind(), OutputType::Branch);
|
||||
|
||||
let Some(payments) = tx.payments(coin, &branch_address, branch_output.balance().amount.0)
|
||||
let Some(payments) =
|
||||
tx.payments::<S>(coin, &branch_address, branch_output.balance().amount.0)
|
||||
else {
|
||||
// If this output has become too small to satisfy this branch, drop it
|
||||
continue;
|
||||
|
@ -550,8 +423,9 @@ impl<S: ScannerFeed, P: TransactionPlanner<S, EffectedReceivedOutputs<S>>> Sched
|
|||
// Fulfill the payments we prior couldn't
|
||||
let mut eventualities = HashMap::new();
|
||||
for (key, _stage) in active_keys {
|
||||
eventualities
|
||||
.insert(key.to_bytes().as_ref().to_vec(), Self::step(txn, active_keys, block, *key));
|
||||
assert!(eventualities
|
||||
.insert(key.to_bytes().as_ref().to_vec(), Self::step(txn, active_keys, block, *key))
|
||||
.is_none());
|
||||
}
|
||||
|
||||
// If this key has been flushed, forward all outputs
|
||||
|
|
Loading…
Reference in a new issue