Reorganize FROST's handling of curves

This commit is contained in:
Luke Parker 2022-06-24 19:47:19 -04:00
parent 6775fb471e
commit 60254a0171
No known key found for this signature in database
GPG key ID: F9F1386DB1E119B6
18 changed files with 165 additions and 154 deletions

View file

@ -10,8 +10,7 @@ use curve25519_dalek::{
}; };
use transcript::{Transcript, RecommendedTranscript}; use transcript::{Transcript, RecommendedTranscript};
use frost::curves::Curve; use frost::curve::{Curve, Ed25519};
pub use frost::curves::dalek::Ed25519;
use dalek_ff_group as dfg; use dalek_ff_group as dfg;
use crate::random_scalar; use crate::random_scalar;

View file

@ -14,12 +14,12 @@ use curve25519_dalek::{
use group::Group; use group::Group;
use transcript::{Transcript, RecommendedTranscript}; use transcript::{Transcript, RecommendedTranscript};
use frost::{FrostError, MultisigView, algorithm::Algorithm}; use frost::{curve::Ed25519, FrostError, MultisigView, algorithm::Algorithm};
use dalek_ff_group as dfg; use dalek_ff_group as dfg;
use crate::{ use crate::{
hash_to_point, hash_to_point,
frost::{MultisigError, Ed25519, DLEqProof, read_dleq}, frost::{MultisigError, DLEqProof, read_dleq},
ringct::clsag::{ClsagInput, Clsag} ringct::clsag::{ClsagInput, Clsag}
}; };

View file

@ -7,6 +7,8 @@ use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar};
#[cfg(feature = "multisig")] #[cfg(feature = "multisig")]
use transcript::RecommendedTranscript; use transcript::RecommendedTranscript;
#[cfg(feature = "multisig")]
use frost::curve::Ed25519;
use crate::{ use crate::{
Commitment, Commitment,
@ -15,7 +17,7 @@ use crate::{
ringct::clsag::{ClsagInput, Clsag} ringct::clsag::{ClsagInput, Clsag}
}; };
#[cfg(feature = "multisig")] #[cfg(feature = "multisig")]
use crate::{frost::{Ed25519, MultisigError}, ringct::clsag::{ClsagDetails, ClsagMultisig}}; use crate::{frost::MultisigError, ringct::clsag::{ClsagDetails, ClsagMultisig}};
#[cfg(feature = "multisig")] #[cfg(feature = "multisig")]
use frost::tests::{key_gen, algorithm_machines, sign}; use frost::tests::{key_gen, algorithm_machines, sign};

View file

@ -7,6 +7,7 @@ use curve25519_dalek::{traits::Identity, scalar::Scalar, edwards::{EdwardsPoint,
use transcript::{Transcript, RecommendedTranscript}; use transcript::{Transcript, RecommendedTranscript};
use frost::{ use frost::{
curve::Ed25519,
FrostError, MultisigKeys, FrostError, MultisigKeys,
sign::{ sign::{
PreprocessMachine, SignMachine, SignatureMachine, PreprocessMachine, SignMachine, SignatureMachine,
@ -15,7 +16,6 @@ use frost::{
}; };
use crate::{ use crate::{
frost::Ed25519,
random_scalar, ringct::{clsag::{ClsagInput, ClsagDetails, ClsagMultisig}, bulletproofs::Bulletproofs, RctPrunable}, random_scalar, ringct::{clsag::{ClsagInput, ClsagDetails, ClsagMultisig}, bulletproofs::Bulletproofs, RctPrunable},
transaction::{Input, Transaction}, transaction::{Input, Transaction},
rpc::Rpc, rpc::Rpc,

View file

@ -14,7 +14,9 @@ use curve25519_dalek::constants::ED25519_BASEPOINT_TABLE;
#[cfg(feature = "multisig")] #[cfg(feature = "multisig")]
use dalek_ff_group::Scalar; use dalek_ff_group::Scalar;
#[cfg(feature = "multisig")] #[cfg(feature = "multisig")]
use frost::tests::{THRESHOLD, key_gen, sign}; use transcript::RecommendedTranscript;
#[cfg(feature = "multisig")]
use frost::{curve::Ed25519, tests::{THRESHOLD, key_gen, sign}};
use monero::{ use monero::{
network::Network, network::Network,
@ -26,11 +28,6 @@ use monero_serai::{random_scalar, wallet::SignableTransaction};
mod rpc; mod rpc;
use crate::rpc::{rpc, mine_block}; use crate::rpc::{rpc, mine_block};
#[cfg(feature = "multisig")]
use transcript::RecommendedTranscript;
#[cfg(feature = "multisig")]
use monero_serai::frost::Ed25519;
lazy_static! { lazy_static! {
static ref SEQUENTIAL: Mutex<()> = Mutex::new(()); static ref SEQUENTIAL: Mutex<()> = Mutex::new(());
} }

View file

@ -8,7 +8,7 @@ use group::{ff::PrimeField, Group};
use dalek_ff_group::Scalar; use dalek_ff_group::Scalar;
use crate::{CurveError, Curve, algorithm::Hram}; use crate::{curve::{CurveError, Curve}, algorithm::Hram};
macro_rules! dalek_curve { macro_rules! dalek_curve {
( (
@ -125,22 +125,6 @@ macro_rules! dalek_curve {
} }
} }
#[cfg(feature = "ed25519")]
dalek_curve!(
Ed25519,
IetfEd25519Hram,
EdwardsPoint,
CompressedEdwardsY,
EdwardsBasepointTable,
ED25519_BASEPOINT_POINT,
ED25519_BASEPOINT_TABLE,
|point: EdwardsPoint| !bool::from(point.is_torsion_free()),
b"edwards25519",
b"",
b"",
b"",
);
#[cfg(any(test, feature = "ristretto"))] #[cfg(any(test, feature = "ristretto"))]
dalek_curve!( dalek_curve!(
Ristretto, Ristretto,
@ -156,3 +140,19 @@ dalek_curve!(
b"chal", b"chal",
b"digest", b"digest",
); );
#[cfg(feature = "ed25519")]
dalek_curve!(
Ed25519,
IetfEd25519Hram,
EdwardsPoint,
CompressedEdwardsY,
EdwardsBasepointTable,
ED25519_BASEPOINT_POINT,
ED25519_BASEPOINT_TABLE,
|point: EdwardsPoint| !bool::from(point.is_torsion_free()),
b"edwards25519",
b"",
b"",
b"",
);

View file

@ -8,7 +8,7 @@ use group::{ff::{Field, PrimeField}, Group, GroupEncoding};
use elliptic_curve::{bigint::{Encoding, U384}, hash2curve::{Expander, ExpandMsg, ExpandMsgXmd}}; use elliptic_curve::{bigint::{Encoding, U384}, hash2curve::{Expander, ExpandMsg, ExpandMsgXmd}};
use crate::{curves::{CurveError, Curve}, algorithm::Hram}; use crate::{curve::{CurveError, Curve}, algorithm::Hram};
macro_rules! kp_curve { macro_rules! kp_curve {
( (

View file

@ -0,0 +1,121 @@
use core::{ops::Mul, fmt::Debug};
use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use group::{ff::PrimeField, Group, GroupOps};
#[cfg(any(test, feature = "dalek"))]
mod dalek;
#[cfg(any(test, feature = "ristretto"))]
pub use dalek::{Ristretto, IetfRistrettoHram};
#[cfg(feature = "ed25519")]
pub use dalek::{Ed25519, IetfEd25519Hram};
#[cfg(feature = "kp256")]
mod kp256;
#[cfg(feature = "secp256k1")]
pub use kp256::{Secp256k1, NonIetfSecp256k1Hram};
#[cfg(feature = "p256")]
pub use kp256::{P256, IetfP256Hram};
/// Set of errors for curve-related operations, namely encoding and decoding
#[derive(Clone, Error, Debug)]
pub enum CurveError {
#[error("invalid length for data (expected {0}, got {0})")]
InvalidLength(usize, usize),
#[error("invalid scalar")]
InvalidScalar,
#[error("invalid point")]
InvalidPoint,
}
/// Unified trait to manage a field/group
// This should be moved into its own crate if the need for generic cryptography over ff/group
// continues, which is the exact reason ff/group exists (to provide a generic interface)
// elliptic-curve exists, yet it doesn't really serve the same role, nor does it use &[u8]/Vec<u8>
// It uses GenericArray which will hopefully be deprecated as Rust evolves and doesn't offer enough
// advantages in the modern day to be worth the hassle -- Kayaba
pub trait Curve: Clone + Copy + PartialEq + Eq + Debug {
/// Scalar field element type
// This is available via G::Scalar yet `C::G::Scalar` is ambiguous, forcing horrific accesses
type F: PrimeField;
/// Group element type
type G: Group<Scalar = Self::F> + GroupOps;
/// Precomputed table type
type T: Mul<Self::F, Output = Self::G>;
/// ID for this curve
const ID: &'static [u8];
/// Generator for the group
// While group does provide this in its API, privacy coins will want to use a custom basepoint
const GENERATOR: Self::G;
/// Table for the generator for the group
/// If there isn't a precomputed table available, the generator itself should be used
const GENERATOR_TABLE: Self::T;
/// If little endian is used for the scalar field's Repr
const LITTLE_ENDIAN: bool;
/// Securely generate a random nonce. H4 from the IETF draft
fn random_nonce<R: RngCore + CryptoRng>(secret: Self::F, rng: &mut R) -> Self::F;
/// Hash the message for the binding factor. H3 from the IETF draft
// This doesn't actually need to be part of Curve as it does nothing with the curve
// This also solely relates to FROST and with a proper Algorithm/HRAM, all projects using
// aggregatable signatures over this curve will work without issue
// It is kept here as Curve + H{1, 2, 3} is effectively a ciphersuite according to the IETF draft
// and moving it to Schnorr would force all of them into being ciphersuite-specific
// H2 is left to the Schnorr Algorithm as H2 is the H used in HRAM, which Schnorr further
// modularizes
fn hash_msg(msg: &[u8]) -> Vec<u8>;
/// Hash the commitments and message to calculate the binding factor. H1 from the IETF draft
fn hash_binding_factor(binding: &[u8]) -> Self::F;
// The following methods would optimally be F:: and G:: yet developers can't control F/G
// They can control a trait they pass into this library
/// Field element from hash. Used during key gen and by other crates under Serai as a general
/// utility
// Not parameterized by Digest as it's fine for it to use its own hash function as relevant to
// hash_msg and hash_binding_factor
#[allow(non_snake_case)]
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F;
/// Constant size of a serialized scalar field element
// The alternative way to grab this would be either serializing a junk element and getting its
// length or doing a naive division of its BITS property by 8 and assuming a lack of padding
#[allow(non_snake_case)]
fn F_len() -> usize;
/// Constant size of a serialized group element
// We could grab the serialization as described above yet a naive developer may use a
// non-constant size encoding, proving yet another reason to force this to be a provided constant
// A naive developer could still provide a constant for a variable length encoding, yet at least
// that is on them
#[allow(non_snake_case)]
fn G_len() -> usize;
/// Field element from slice. Preferred to be canonical yet does not have to be
// Required due to the lack of standardized encoding functions provided by ff/group
// While they do technically exist, their usage of Self::Repr breaks all potential library usage
// without helper functions like this
#[allow(non_snake_case)]
fn F_from_slice(slice: &[u8]) -> Result<Self::F, CurveError>;
/// Group element from slice. Must require canonicity or risks differing binding factors
#[allow(non_snake_case)]
fn G_from_slice(slice: &[u8]) -> Result<Self::G, CurveError>;
/// Obtain a vector of the byte encoding of F
#[allow(non_snake_case)]
fn F_to_bytes(f: &Self::F) -> Vec<u8>;
/// Obtain a vector of the byte encoding of G
#[allow(non_snake_case)]
fn G_to_bytes(g: &Self::G) -> Vec<u8>;
}

View file

@ -1,5 +0,0 @@
#[cfg(any(test, feature = "dalek"))]
pub mod dalek;
#[cfg(feature = "kp256")]
pub mod kp256;

View file

@ -7,7 +7,8 @@ use group::ff::{Field, PrimeField};
use multiexp::{multiexp_vartime, BatchVerifier}; use multiexp::{multiexp_vartime, BatchVerifier};
use crate::{ use crate::{
Curve, MultisigParams, MultisigKeys, FrostError, curve::Curve,
FrostError, MultisigParams, MultisigKeys,
schnorr::{self, SchnorrSignature}, schnorr::{self, SchnorrSignature},
validate_map validate_map
}; };

View file

@ -1,122 +1,20 @@
use core::{ops::Mul, fmt::Debug}; use core::fmt::Debug;
use std::collections::HashMap; use std::collections::HashMap;
use thiserror::Error; use thiserror::Error;
use rand_core::{RngCore, CryptoRng}; use group::ff::{Field, PrimeField};
use group::{ff::{Field, PrimeField}, Group, GroupOps};
mod schnorr; mod schnorr;
pub mod curve;
use curve::Curve;
pub mod key_gen; pub mod key_gen;
pub mod algorithm; pub mod algorithm;
pub mod sign; pub mod sign;
#[cfg(any(test, feature = "curves"))]
pub mod curves;
pub mod tests; pub mod tests;
/// Set of errors for curve-related operations, namely encoding and decoding
#[derive(Clone, Error, Debug)]
pub enum CurveError {
#[error("invalid length for data (expected {0}, got {0})")]
InvalidLength(usize, usize),
#[error("invalid scalar")]
InvalidScalar,
#[error("invalid point")]
InvalidPoint,
}
/// Unified trait to manage a field/group
// This should be moved into its own crate if the need for generic cryptography over ff/group
// continues, which is the exact reason ff/group exists (to provide a generic interface)
// elliptic-curve exists, yet it doesn't really serve the same role, nor does it use &[u8]/Vec<u8>
// It uses GenericArray which will hopefully be deprecated as Rust evolves and doesn't offer enough
// advantages in the modern day to be worth the hassle -- Kayaba
pub trait Curve: Clone + Copy + PartialEq + Eq + Debug {
/// Scalar field element type
// This is available via G::Scalar yet `C::G::Scalar` is ambiguous, forcing horrific accesses
type F: PrimeField;
/// Group element type
type G: Group<Scalar = Self::F> + GroupOps;
/// Precomputed table type
type T: Mul<Self::F, Output = Self::G>;
/// ID for this curve
const ID: &'static [u8];
/// Generator for the group
// While group does provide this in its API, privacy coins will want to use a custom basepoint
const GENERATOR: Self::G;
/// Table for the generator for the group
/// If there isn't a precomputed table available, the generator itself should be used
const GENERATOR_TABLE: Self::T;
/// If little endian is used for the scalar field's Repr
const LITTLE_ENDIAN: bool;
/// Securely generate a random nonce. H4 from the IETF draft
fn random_nonce<R: RngCore + CryptoRng>(secret: Self::F, rng: &mut R) -> Self::F;
/// Hash the message for the binding factor. H3 from the IETF draft
// This doesn't actually need to be part of Curve as it does nothing with the curve
// This also solely relates to FROST and with a proper Algorithm/HRAM, all projects using
// aggregatable signatures over this curve will work without issue
// It is kept here as Curve + H{1, 2, 3} is effectively a ciphersuite according to the IETF draft
// and moving it to Schnorr would force all of them into being ciphersuite-specific
// H2 is left to the Schnorr Algorithm as H2 is the H used in HRAM, which Schnorr further
// modularizes
fn hash_msg(msg: &[u8]) -> Vec<u8>;
/// Hash the commitments and message to calculate the binding factor. H1 from the IETF draft
fn hash_binding_factor(binding: &[u8]) -> Self::F;
// The following methods would optimally be F:: and G:: yet developers can't control F/G
// They can control a trait they pass into this library
/// Field element from hash. Used during key gen and by other crates under Serai as a general
/// utility
// Not parameterized by Digest as it's fine for it to use its own hash function as relevant to
// hash_msg and hash_binding_factor
#[allow(non_snake_case)]
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F;
/// Constant size of a serialized scalar field element
// The alternative way to grab this would be either serializing a junk element and getting its
// length or doing a naive division of its BITS property by 8 and assuming a lack of padding
#[allow(non_snake_case)]
fn F_len() -> usize;
/// Constant size of a serialized group element
// We could grab the serialization as described above yet a naive developer may use a
// non-constant size encoding, proving yet another reason to force this to be a provided constant
// A naive developer could still provide a constant for a variable length encoding, yet at least
// that is on them
#[allow(non_snake_case)]
fn G_len() -> usize;
/// Field element from slice. Preferred to be canonical yet does not have to be
// Required due to the lack of standardized encoding functions provided by ff/group
// While they do technically exist, their usage of Self::Repr breaks all potential library usage
// without helper functions like this
#[allow(non_snake_case)]
fn F_from_slice(slice: &[u8]) -> Result<Self::F, CurveError>;
/// Group element from slice. Must require canonicity or risks differing binding factors
#[allow(non_snake_case)]
fn G_from_slice(slice: &[u8]) -> Result<Self::G, CurveError>;
/// Obtain a vector of the byte encoding of F
#[allow(non_snake_case)]
fn F_to_bytes(f: &Self::F) -> Vec<u8>;
/// Obtain a vector of the byte encoding of G
#[allow(non_snake_case)]
fn G_to_bytes(g: &Self::G) -> Vec<u8>;
}
/// Parameters for a multisig /// Parameters for a multisig
// These fields can not be made public as they should be static // These fields can not be made public as they should be static
#[derive(Clone, Copy, PartialEq, Eq, Debug)] #[derive(Clone, Copy, PartialEq, Eq, Debug)]

View file

@ -8,7 +8,7 @@ use group::ff::Field;
use transcript::Transcript; use transcript::Transcript;
use crate::{ use crate::{
Curve, curve::Curve,
FrostError, FrostError,
MultisigParams, MultisigKeys, MultisigView, MultisigParams, MultisigKeys, MultisigView,
algorithm::Algorithm, algorithm::Algorithm,

View file

@ -1,11 +1,11 @@
use rand::rngs::OsRng; use rand::rngs::OsRng;
use crate::{curves::dalek, tests::vectors::{Vectors, test_with_vectors}}; use crate::{curve, tests::vectors::{Vectors, test_with_vectors}};
#[cfg(any(test, feature = "ristretto"))] #[cfg(any(test, feature = "ristretto"))]
#[test] #[test]
fn ristretto_vectors() { fn ristretto_vectors() {
test_with_vectors::<_, dalek::Ristretto, dalek::IetfRistrettoHram>( test_with_vectors::<_, curve::Ristretto, curve::IetfRistrettoHram>(
&mut OsRng, &mut OsRng,
Vectors { Vectors {
threshold: 2, threshold: 2,
@ -42,7 +42,7 @@ fn ristretto_vectors() {
#[cfg(feature = "ed25519")] #[cfg(feature = "ed25519")]
#[test] #[test]
fn ed25519_vectors() { fn ed25519_vectors() {
test_with_vectors::<_, dalek::Ed25519, dalek::IetfEd25519Hram>( test_with_vectors::<_, curve::Ed25519, curve::IetfEd25519Hram>(
&mut OsRng, &mut OsRng,
Vectors { Vectors {
threshold: 2, threshold: 2,

View file

@ -3,12 +3,12 @@ use rand::rngs::OsRng;
#[cfg(feature = "secp256k1")] #[cfg(feature = "secp256k1")]
use crate::tests::{curve::test_curve, schnorr::test_schnorr}; use crate::tests::{curve::test_curve, schnorr::test_schnorr};
#[cfg(feature = "secp256k1")] #[cfg(feature = "secp256k1")]
use crate::curves::kp256::Secp256k1; use crate::curve::Secp256k1;
#[cfg(feature = "p256")] #[cfg(feature = "p256")]
use crate::tests::vectors::{Vectors, test_with_vectors}; use crate::tests::vectors::{Vectors, test_with_vectors};
#[cfg(feature = "p256")] #[cfg(feature = "p256")]
use crate::curves::kp256::{P256, IetfP256Hram}; use crate::curve::{P256, IetfP256Hram};
#[cfg(feature = "secp256k1")] #[cfg(feature = "secp256k1")]
#[test] #[test]

View file

@ -6,11 +6,10 @@ use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar};
use dalek_ff_group as dfg; use dalek_ff_group as dfg;
use transcript::RecommendedTranscript; use transcript::RecommendedTranscript;
use frost::MultisigKeys; use frost::{curve::Ed25519, MultisigKeys};
use monero::{PublicKey, network::Network, util::address::Address}; use monero::{PublicKey, network::Network, util::address::Address};
use monero_serai::{ use monero_serai::{
frost::Ed25519,
transaction::{Timelock, Transaction}, transaction::{Timelock, Transaction},
rpc::Rpc, rpc::Rpc,
wallet::{Fee, SpendableOutput, SignableTransaction as MSignableTransaction, TransactionMachine} wallet::{Fee, SpendableOutput, SignableTransaction as MSignableTransaction, TransactionMachine}

View file

@ -3,9 +3,8 @@ use std::{marker::Send, sync::Arc, collections::HashMap};
use async_trait::async_trait; use async_trait::async_trait;
use thiserror::Error; use thiserror::Error;
use frost::{Curve, FrostError, MultisigKeys, sign::PreprocessMachine};
use transcript::RecommendedTranscript; use transcript::RecommendedTranscript;
use frost::{curve::Curve, FrostError, MultisigKeys, sign::PreprocessMachine};
mod coins; mod coins;
mod wallet; mod wallet;

View file

@ -6,7 +6,7 @@ use rand::rngs::OsRng;
use group::Group; use group::Group;
use frost::Curve; use frost::curve::Curve;
use crate::{ use crate::{
NetworkError, Network, NetworkError, Network,

View file

@ -4,7 +4,7 @@ use rand_core::OsRng;
use transcript::{Transcript, RecommendedTranscript}; use transcript::{Transcript, RecommendedTranscript};
use frost::{Curve, MultisigKeys, sign::{PreprocessMachine, SignMachine, SignatureMachine}}; use frost::{curve::Curve, MultisigKeys, sign::{PreprocessMachine, SignMachine, SignatureMachine}};
use crate::{CoinError, SignError, Output, Coin, Network}; use crate::{CoinError, SignError, Output, Coin, Network};