Implement Schnorr half-aggregation from https://eprint.iacr.org/2021/350.pdf

Relevant to https://github.com/serai-dex/serai/issues/99.
This commit is contained in:
Luke Parker 2022-11-04 08:03:29 -04:00
parent 8e53522780
commit 5977aeb489
No known key found for this signature in database
GPG key ID: F9F1386DB1E119B6
4 changed files with 215 additions and 7 deletions

View file

@ -17,11 +17,14 @@ rand_core = "0.6"
zeroize = { version = "1.5", features = ["zeroize_derive"] }
digest = "0.10"
group = "0.12"
ciphersuite = { path = "../ciphersuite", version = "0.1" }
multiexp = { path = "../multiexp", version = "0.2", features = ["batch"] }
[dev-dependencies]
blake2 = "0.10"
dalek-ff-group = { path = "../dalek-ff-group", version = "^0.1.2" }
ciphersuite = { path = "../ciphersuite", version = "0.1", features = ["ristretto"] }

View file

@ -0,0 +1,168 @@
use std::io::{self, Read, Write};
use zeroize::Zeroize;
use digest::Digest;
use group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
prime::PrimeGroup,
};
use multiexp::multiexp_vartime;
use ciphersuite::Ciphersuite;
use crate::SchnorrSignature;
fn digest<D: Digest>() -> D {
D::new_with_prefix(b"Schnorr Aggregate")
}
// A secure challenge will include the nonce and whatever message
// Depending on the environment, a secure challenge *may* not include the public key, even if
// the modern consensus is it should
// Accordingly, transcript both here, even if ideally only the latter would need to be
fn digest_accumulate<D: Digest, G: PrimeGroup>(digest: &mut D, key: G, challenge: G::Scalar) {
digest.update(key.to_bytes().as_ref());
digest.update(challenge.to_repr().as_ref());
}
// Performs a big-endian modular reduction of the hash value
// This is used by the below aggregator to prevent mutability
// Only an 128-bit scalar is needed to offer 128-bits of security against malleability per
// https://cr.yp.to/badbatch/badbatch-20120919.pdf
// Accordingly, while a 256-bit hash used here with a 256-bit ECC will have bias, it shouldn't be
// an issue
fn scalar_from_digest<D: Digest, F: PrimeField>(digest: D) -> F {
let bytes = digest.finalize();
debug_assert_eq!(bytes.len() % 8, 0);
let mut res = F::zero();
let mut i = 0;
while i < bytes.len() {
if i != 0 {
for _ in 0 .. 8 {
res += res;
}
}
res += F::from(u64::from_be_bytes(bytes[i .. (i + 8)].try_into().unwrap()));
i += 8;
}
res
}
fn digest_yield<D: Digest, F: PrimeField>(digest: D, i: usize) -> F {
scalar_from_digest(digest.chain_update(
u32::try_from(i).expect("more than 4 billion signatures in aggregate").to_le_bytes(),
))
}
/// Aggregate Schnorr signature as defined in https://eprint.iacr.org/2021/350.pdf.
#[allow(non_snake_case)]
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct SchnorrAggregate<C: Ciphersuite> {
pub Rs: Vec<C::G>,
pub s: C::F,
}
impl<C: Ciphersuite> SchnorrAggregate<C> {
/// Read a SchnorrAggregate from something implementing Read.
pub fn read<R: Read>(reader: &mut R) -> io::Result<Self> {
let mut len = [0; 4];
reader.read_exact(&mut len)?;
#[allow(non_snake_case)]
let mut Rs = vec![];
for _ in 0 .. u32::from_le_bytes(len) {
Rs.push(C::read_G(reader)?);
}
Ok(SchnorrAggregate { Rs, s: C::read_F(reader)? })
}
/// Write a SchnorrAggregate to something implementing Read.
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(
&u32::try_from(self.Rs.len())
.expect("more than 4 billion signatures in aggregate")
.to_le_bytes(),
)?;
#[allow(non_snake_case)]
for R in &self.Rs {
writer.write_all(R.to_bytes().as_ref())?;
}
writer.write_all(self.s.to_repr().as_ref())
}
/// Serialize a SchnorrAggregate, returning a Vec<u8>.
pub fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
/// Perform signature verification.
#[must_use]
pub fn verify<D: Clone + Digest>(&self, keys_and_challenges: &[(C::G, C::F)]) -> bool {
if self.Rs.len() != keys_and_challenges.len() {
return false;
}
let mut digest = digest::<D>();
for (key, challenge) in keys_and_challenges {
digest_accumulate(&mut digest, *key, *challenge);
}
let mut pairs = Vec::with_capacity((2 * keys_and_challenges.len()) + 1);
for (i, (key, challenge)) in keys_and_challenges.iter().enumerate() {
let z = digest_yield(digest.clone(), i);
pairs.push((z, self.Rs[i]));
pairs.push((z * challenge, *key));
}
pairs.push((-self.s, C::generator()));
multiexp_vartime(&pairs).is_identity().into()
}
}
#[allow(non_snake_case)]
#[derive(Clone, Debug, Zeroize)]
pub struct SchnorrAggregator<D: Clone + Digest, C: Ciphersuite> {
digest: D,
sigs: Vec<SchnorrSignature<C>>,
}
impl<D: Clone + Digest, C: Ciphersuite> Default for SchnorrAggregator<D, C> {
fn default() -> Self {
Self { digest: digest(), sigs: vec![] }
}
}
impl<D: Clone + Digest, C: Ciphersuite> SchnorrAggregator<D, C> {
/// Create a new aggregator.
pub fn new() -> Self {
Self::default()
}
/// Aggregate a signature.
pub fn aggregate(&mut self, public_key: C::G, challenge: C::F, sig: SchnorrSignature<C>) {
digest_accumulate(&mut self.digest, public_key, challenge);
self.sigs.push(sig);
}
/// Complete aggregation, returning None if none were aggregated.
pub fn complete(self) -> Option<SchnorrAggregate<C>> {
if self.sigs.is_empty() {
return None;
}
let mut aggregate =
SchnorrAggregate { Rs: Vec::with_capacity(self.sigs.len()), s: C::F::zero() };
for i in 0 .. self.sigs.len() {
aggregate.Rs.push(self.sigs[i].R);
aggregate.s += self.sigs[i].s * digest_yield::<_, C::F>(self.digest.clone(), i);
}
Some(aggregate)
}
}

View file

@ -13,6 +13,8 @@ use multiexp::BatchVerifier;
use ciphersuite::Ciphersuite;
pub mod aggregate;
#[cfg(test)]
mod tests;

View file

@ -1,13 +1,19 @@
use rand_core::OsRng;
use blake2::{digest::typenum::U32, Blake2b};
type Blake2b256 = Blake2b<U32>;
use group::{ff::Field, Group};
use multiexp::BatchVerifier;
use ciphersuite::{Ciphersuite, Ristretto};
use crate::SchnorrSignature;
use crate::{
SchnorrSignature,
aggregate::{SchnorrAggregator, SchnorrAggregate},
};
pub(crate) fn core_sign<C: Ciphersuite>() {
pub(crate) fn sign<C: Ciphersuite>() {
let private_key = C::random_nonzero_F(&mut OsRng);
let nonce = C::random_nonzero_F(&mut OsRng);
let challenge = C::random_nonzero_F(&mut OsRng); // Doesn't bother to craft an HRAm
@ -18,12 +24,12 @@ pub(crate) fn core_sign<C: Ciphersuite>() {
// The above sign function verifies signing works
// This verifies invalid signatures don't pass, using zero signatures, which should effectively be
// random
pub(crate) fn core_verify<C: Ciphersuite>() {
pub(crate) fn verify<C: Ciphersuite>() {
assert!(!SchnorrSignature::<C> { R: C::G::identity(), s: C::F::zero() }
.verify(C::generator() * C::random_nonzero_F(&mut OsRng), C::random_nonzero_F(&mut OsRng)));
}
pub(crate) fn core_batch_verify<C: Ciphersuite>() {
pub(crate) fn batch_verify<C: Ciphersuite>() {
// Create 5 signatures
let mut keys = vec![];
let mut challenges = vec![];
@ -64,9 +70,38 @@ pub(crate) fn core_batch_verify<C: Ciphersuite>() {
}
}
pub(crate) fn aggregate<C: Ciphersuite>() {
// Create 5 signatures
let mut keys = vec![];
let mut challenges = vec![];
let mut aggregator = SchnorrAggregator::<Blake2b256, C>::new();
for i in 0 .. 5 {
keys.push(C::random_nonzero_F(&mut OsRng));
challenges.push(C::random_nonzero_F(&mut OsRng));
aggregator.aggregate(
C::generator() * keys[i],
challenges[i],
SchnorrSignature::<C>::sign(keys[i], C::random_nonzero_F(&mut OsRng), challenges[i]),
);
}
let aggregate = aggregator.complete().unwrap();
let aggregate =
SchnorrAggregate::<C>::read::<&[u8]>(&mut aggregate.serialize().as_ref()).unwrap();
assert!(aggregate.verify::<Blake2b256>(
keys
.iter()
.map(|key| C::generator() * key)
.zip(challenges.iter().cloned())
.collect::<Vec<_>>()
.as_ref()
));
}
#[test]
fn test() {
core_sign::<Ristretto>();
core_verify::<Ristretto>();
core_batch_verify::<Ristretto>();
sign::<Ristretto>();
verify::<Ristretto>();
batch_verify::<Ristretto>();
aggregate::<Ristretto>();
}