mirror of
https://github.com/serai-dex/serai.git
synced 2024-12-22 11:39:35 +00:00
Reconcile the two copies of scalar_vector.rs in monero-serai
This commit is contained in:
parent
b427f4b8ab
commit
5629c94b8b
7 changed files with 164 additions and 238 deletions
|
@ -9,7 +9,7 @@ use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as D
|
|||
use group::{ff::Field, Group};
|
||||
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
|
||||
|
||||
use multiexp::BatchVerifier;
|
||||
use multiexp::{BatchVerifier, multiexp};
|
||||
|
||||
use crate::{Commitment, ringct::bulletproofs::core::*};
|
||||
|
||||
|
@ -17,7 +17,20 @@ include!(concat!(env!("OUT_DIR"), "/generators.rs"));
|
|||
|
||||
static IP12_CELL: OnceLock<Scalar> = OnceLock::new();
|
||||
pub(crate) fn IP12() -> Scalar {
|
||||
*IP12_CELL.get_or_init(|| inner_product(&ScalarVector(vec![Scalar::ONE; N]), TWO_N()))
|
||||
*IP12_CELL.get_or_init(|| ScalarVector(vec![Scalar::ONE; N]).inner_product(TWO_N()))
|
||||
}
|
||||
|
||||
pub(crate) fn hadamard_fold(
|
||||
l: &[EdwardsPoint],
|
||||
r: &[EdwardsPoint],
|
||||
a: Scalar,
|
||||
b: Scalar,
|
||||
) -> Vec<EdwardsPoint> {
|
||||
let mut res = Vec::with_capacity(l.len() / 2);
|
||||
for i in 0 .. l.len() {
|
||||
res.push(multiexp(&[(a, l[i]), (b, r[i])]));
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
|
@ -57,7 +70,7 @@ impl OriginalStruct {
|
|||
let mut cache = hash_to_scalar(&y.to_bytes());
|
||||
let z = cache;
|
||||
|
||||
let l0 = &aL - z;
|
||||
let l0 = aL - z;
|
||||
let l1 = sL;
|
||||
|
||||
let mut zero_twos = Vec::with_capacity(MN);
|
||||
|
@ -69,12 +82,12 @@ impl OriginalStruct {
|
|||
}
|
||||
|
||||
let yMN = ScalarVector::powers(y, MN);
|
||||
let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos);
|
||||
let r1 = yMN * sR;
|
||||
let r0 = ((aR + z) * &yMN) + &ScalarVector(zero_twos);
|
||||
let r1 = yMN * &sR;
|
||||
|
||||
let (T1, T2, x, mut taux) = {
|
||||
let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0);
|
||||
let t2 = inner_product(&l1, &r1);
|
||||
let t1 = l0.clone().inner_product(&r1) + r0.clone().inner_product(&l1);
|
||||
let t2 = l1.clone().inner_product(&r1);
|
||||
|
||||
let mut tau1 = Scalar::random(&mut *rng);
|
||||
let mut tau2 = Scalar::random(&mut *rng);
|
||||
|
@ -100,10 +113,10 @@ impl OriginalStruct {
|
|||
taux += zpow[i + 2] * gamma;
|
||||
}
|
||||
|
||||
let l = &l0 + &(l1 * x);
|
||||
let r = &r0 + &(r1 * x);
|
||||
let l = l0 + &(l1 * x);
|
||||
let r = r0 + &(r1 * x);
|
||||
|
||||
let t = inner_product(&l, &r);
|
||||
let t = l.clone().inner_product(&r);
|
||||
|
||||
let x_ip =
|
||||
hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]);
|
||||
|
@ -126,8 +139,8 @@ impl OriginalStruct {
|
|||
let (aL, aR) = a.split();
|
||||
let (bL, bR) = b.split();
|
||||
|
||||
let cL = inner_product(&aL, &bR);
|
||||
let cR = inner_product(&aR, &bL);
|
||||
let cL = aL.clone().inner_product(&bR);
|
||||
let cR = aR.clone().inner_product(&bL);
|
||||
|
||||
let (G_L, G_R) = G_proof.split_at(aL.len());
|
||||
let (H_L, H_R) = H_proof.split_at(aL.len());
|
||||
|
@ -140,8 +153,8 @@ impl OriginalStruct {
|
|||
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
|
||||
let winv = w.invert().unwrap();
|
||||
|
||||
a = (aL * w) + (aR * winv);
|
||||
b = (bL * winv) + (bR * w);
|
||||
a = (aL * w) + &(aR * winv);
|
||||
b = (bL * winv) + &(bR * w);
|
||||
|
||||
if a.len() != 1 {
|
||||
G_proof = hadamard_fold(G_L, G_R, winv, w);
|
||||
|
|
|
@ -112,7 +112,7 @@ impl AggregateRangeStatement {
|
|||
let mut d = ScalarVector::new(mn);
|
||||
for j in 1 ..= V.len() {
|
||||
z_pow.push(z.pow(Scalar::from(2 * u64::try_from(j).unwrap()))); // TODO: Optimize this
|
||||
d = d.add_vec(&Self::d_j(j, V.len()).mul(z_pow[j - 1]));
|
||||
d = d + &(Self::d_j(j, V.len()) * (z_pow[j - 1]));
|
||||
}
|
||||
|
||||
let mut ascending_y = ScalarVector(vec![y]);
|
||||
|
@ -124,7 +124,8 @@ impl AggregateRangeStatement {
|
|||
let mut descending_y = ascending_y.clone();
|
||||
descending_y.0.reverse();
|
||||
|
||||
let d_descending_y = d.mul_vec(&descending_y);
|
||||
let d_descending_y = d.clone() * &descending_y;
|
||||
let d_descending_y_plus_z = d_descending_y + z;
|
||||
|
||||
let y_mn_plus_one = descending_y[0] * y;
|
||||
|
||||
|
@ -135,9 +136,9 @@ impl AggregateRangeStatement {
|
|||
|
||||
let neg_z = -z;
|
||||
let mut A_terms = Vec::with_capacity((generators.len() * 2) + 2);
|
||||
for (i, d_y_z) in d_descending_y.add(z).0.drain(..).enumerate() {
|
||||
for (i, d_y_z) in d_descending_y_plus_z.0.iter().enumerate() {
|
||||
A_terms.push((neg_z, generators.generator(GeneratorsList::GBold1, i)));
|
||||
A_terms.push((d_y_z, generators.generator(GeneratorsList::HBold1, i)));
|
||||
A_terms.push((*d_y_z, generators.generator(GeneratorsList::HBold1, i)));
|
||||
}
|
||||
A_terms.push((y_mn_plus_one, commitment_accum));
|
||||
A_terms.push((
|
||||
|
@ -145,7 +146,14 @@ impl AggregateRangeStatement {
|
|||
Generators::g(),
|
||||
));
|
||||
|
||||
(y, d_descending_y, y_mn_plus_one, z, ScalarVector(z_pow), A + multiexp_vartime(&A_terms))
|
||||
(
|
||||
y,
|
||||
d_descending_y_plus_z,
|
||||
y_mn_plus_one,
|
||||
z,
|
||||
ScalarVector(z_pow),
|
||||
A + multiexp_vartime(&A_terms),
|
||||
)
|
||||
}
|
||||
|
||||
pub(crate) fn prove<R: RngCore + CryptoRng>(
|
||||
|
@ -191,7 +199,7 @@ impl AggregateRangeStatement {
|
|||
a_l.0.append(&mut u64_decompose(*witness.values.get(j - 1).unwrap_or(&0)).0);
|
||||
}
|
||||
|
||||
let a_r = a_l.sub(Scalar::ONE);
|
||||
let a_r = a_l.clone() - Scalar::ONE;
|
||||
|
||||
let alpha = Scalar::random(&mut *rng);
|
||||
|
||||
|
@ -209,11 +217,11 @@ impl AggregateRangeStatement {
|
|||
// Multiply by INV_EIGHT per earlier commentary
|
||||
A.0 *= crate::INV_EIGHT();
|
||||
|
||||
let (y, d_descending_y, y_mn_plus_one, z, z_pow, A_hat) =
|
||||
let (y, d_descending_y_plus_z, y_mn_plus_one, z, z_pow, A_hat) =
|
||||
Self::compute_A_hat(PointVector(V), &generators, &mut transcript, A);
|
||||
|
||||
let a_l = a_l.sub(z);
|
||||
let a_r = a_r.add_vec(&d_descending_y).add(z);
|
||||
let a_l = a_l - z;
|
||||
let a_r = a_r + &d_descending_y_plus_z;
|
||||
let mut alpha = alpha;
|
||||
for j in 1 ..= witness.gammas.len() {
|
||||
alpha += z_pow[j - 1] * witness.gammas[j - 1] * y_mn_plus_one;
|
||||
|
|
|
@ -3,8 +3,7 @@
|
|||
use group::Group;
|
||||
use dalek_ff_group::{Scalar, EdwardsPoint};
|
||||
|
||||
mod scalar_vector;
|
||||
pub(crate) use scalar_vector::{ScalarVector, weighted_inner_product};
|
||||
pub(crate) use crate::ringct::bulletproofs::scalar_vector::ScalarVector;
|
||||
mod point_vector;
|
||||
pub(crate) use point_vector::PointVector;
|
||||
|
||||
|
|
|
@ -1,114 +0,0 @@
|
|||
use core::{
|
||||
borrow::Borrow,
|
||||
ops::{Index, IndexMut},
|
||||
};
|
||||
use std_shims::vec::Vec;
|
||||
|
||||
use zeroize::Zeroize;
|
||||
|
||||
use group::ff::Field;
|
||||
use dalek_ff_group::Scalar;
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
|
||||
pub(crate) struct ScalarVector(pub(crate) Vec<Scalar>);
|
||||
|
||||
impl Index<usize> for ScalarVector {
|
||||
type Output = Scalar;
|
||||
fn index(&self, index: usize) -> &Scalar {
|
||||
&self.0[index]
|
||||
}
|
||||
}
|
||||
|
||||
impl IndexMut<usize> for ScalarVector {
|
||||
fn index_mut(&mut self, index: usize) -> &mut Scalar {
|
||||
&mut self.0[index]
|
||||
}
|
||||
}
|
||||
|
||||
impl ScalarVector {
|
||||
pub(crate) fn new(len: usize) -> Self {
|
||||
ScalarVector(vec![Scalar::ZERO; len])
|
||||
}
|
||||
|
||||
pub(crate) fn add(&self, scalar: impl Borrow<Scalar>) -> Self {
|
||||
let mut res = self.clone();
|
||||
for val in &mut res.0 {
|
||||
*val += scalar.borrow();
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
pub(crate) fn sub(&self, scalar: impl Borrow<Scalar>) -> Self {
|
||||
let mut res = self.clone();
|
||||
for val in &mut res.0 {
|
||||
*val -= scalar.borrow();
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
pub(crate) fn mul(&self, scalar: impl Borrow<Scalar>) -> Self {
|
||||
let mut res = self.clone();
|
||||
for val in &mut res.0 {
|
||||
*val *= scalar.borrow();
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
pub(crate) fn add_vec(&self, vector: &Self) -> Self {
|
||||
debug_assert_eq!(self.len(), vector.len());
|
||||
let mut res = self.clone();
|
||||
for (i, val) in res.0.iter_mut().enumerate() {
|
||||
*val += vector.0[i];
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
pub(crate) fn mul_vec(&self, vector: &Self) -> Self {
|
||||
debug_assert_eq!(self.len(), vector.len());
|
||||
let mut res = self.clone();
|
||||
for (i, val) in res.0.iter_mut().enumerate() {
|
||||
*val *= vector.0[i];
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
pub(crate) fn inner_product(&self, vector: &Self) -> Scalar {
|
||||
self.mul_vec(vector).sum()
|
||||
}
|
||||
|
||||
pub(crate) fn powers(x: Scalar, len: usize) -> Self {
|
||||
debug_assert!(len != 0);
|
||||
|
||||
let mut res = Vec::with_capacity(len);
|
||||
res.push(Scalar::ONE);
|
||||
res.push(x);
|
||||
for i in 2 .. len {
|
||||
res.push(res[i - 1] * x);
|
||||
}
|
||||
res.truncate(len);
|
||||
ScalarVector(res)
|
||||
}
|
||||
|
||||
pub(crate) fn sum(mut self) -> Scalar {
|
||||
self.0.drain(..).sum()
|
||||
}
|
||||
|
||||
pub(crate) fn len(&self) -> usize {
|
||||
self.0.len()
|
||||
}
|
||||
|
||||
pub(crate) fn split(mut self) -> (Self, Self) {
|
||||
debug_assert!(self.len() > 1);
|
||||
let r = self.0.split_off(self.0.len() / 2);
|
||||
debug_assert_eq!(self.len(), r.len());
|
||||
(self, ScalarVector(r))
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn weighted_inner_product(
|
||||
a: &ScalarVector,
|
||||
b: &ScalarVector,
|
||||
y: &ScalarVector,
|
||||
) -> Scalar {
|
||||
a.inner_product(&b.mul_vec(y))
|
||||
}
|
|
@ -4,7 +4,7 @@ use rand_core::{RngCore, CryptoRng};
|
|||
|
||||
use zeroize::{Zeroize, ZeroizeOnDrop};
|
||||
|
||||
use multiexp::{multiexp, multiexp_vartime, BatchVerifier};
|
||||
use multiexp::{BatchVerifier, multiexp, multiexp_vartime};
|
||||
use group::{
|
||||
ff::{Field, PrimeField},
|
||||
GroupEncoding,
|
||||
|
@ -12,8 +12,7 @@ use group::{
|
|||
use dalek_ff_group::{Scalar, EdwardsPoint};
|
||||
|
||||
use crate::ringct::bulletproofs::plus::{
|
||||
ScalarVector, PointVector, GeneratorsList, Generators, padded_pow_of_2, weighted_inner_product,
|
||||
transcript::*,
|
||||
ScalarVector, PointVector, GeneratorsList, Generators, padded_pow_of_2, transcript::*,
|
||||
};
|
||||
|
||||
// Figure 1
|
||||
|
@ -219,7 +218,7 @@ impl WipStatement {
|
|||
.zip(g_bold.0.iter().copied())
|
||||
.chain(witness.b.0.iter().copied().zip(h_bold.0.iter().copied()))
|
||||
.collect::<Vec<_>>();
|
||||
P_terms.push((weighted_inner_product(&witness.a, &witness.b, &y), g));
|
||||
P_terms.push((witness.a.clone().weighted_inner_product(&witness.b, &y), g));
|
||||
P_terms.push((witness.alpha, h));
|
||||
debug_assert_eq!(multiexp(&P_terms), P);
|
||||
P_terms.zeroize();
|
||||
|
@ -258,14 +257,13 @@ impl WipStatement {
|
|||
let d_l = Scalar::random(&mut *rng);
|
||||
let d_r = Scalar::random(&mut *rng);
|
||||
|
||||
let c_l = weighted_inner_product(&a1, &b2, &y);
|
||||
let c_r = weighted_inner_product(&(a2.mul(y_n_hat)), &b1, &y);
|
||||
let c_l = a1.clone().weighted_inner_product(&b2, &y);
|
||||
let c_r = (a2.clone() * y_n_hat).weighted_inner_product(&b1, &y);
|
||||
|
||||
// TODO: Calculate these with a batch inversion
|
||||
let y_inv_n_hat = y_n_hat.invert().unwrap();
|
||||
|
||||
let mut L_terms = a1
|
||||
.mul(y_inv_n_hat)
|
||||
let mut L_terms = (a1.clone() * y_inv_n_hat)
|
||||
.0
|
||||
.drain(..)
|
||||
.zip(g_bold2.0.iter().copied())
|
||||
|
@ -277,8 +275,7 @@ impl WipStatement {
|
|||
L_vec.push(L);
|
||||
L_terms.zeroize();
|
||||
|
||||
let mut R_terms = a2
|
||||
.mul(y_n_hat)
|
||||
let mut R_terms = (a2.clone() * y_n_hat)
|
||||
.0
|
||||
.drain(..)
|
||||
.zip(g_bold1.0.iter().copied())
|
||||
|
@ -294,8 +291,8 @@ impl WipStatement {
|
|||
(e, inv_e, e_square, inv_e_square, g_bold, h_bold) =
|
||||
Self::next_G_H(&mut transcript, g_bold1, g_bold2, h_bold1, h_bold2, L, R, y_inv_n_hat);
|
||||
|
||||
a = a1.mul(e).add_vec(&a2.mul(y_n_hat * inv_e));
|
||||
b = b1.mul(inv_e).add_vec(&b2.mul(e));
|
||||
a = (a1 * e) + &(a2 * (y_n_hat * inv_e));
|
||||
b = (b1 * inv_e) + &(b2 * e);
|
||||
alpha += (d_l * e_square) + (d_r * inv_e_square);
|
||||
|
||||
debug_assert_eq!(g_bold.len(), a.len());
|
||||
|
|
|
@ -1,85 +1,17 @@
|
|||
use core::ops::{Add, Sub, Mul, Index};
|
||||
use core::{
|
||||
borrow::Borrow,
|
||||
ops::{Index, IndexMut, Add, Sub, Mul},
|
||||
};
|
||||
use std_shims::vec::Vec;
|
||||
|
||||
use zeroize::{Zeroize, ZeroizeOnDrop};
|
||||
|
||||
use group::ff::Field;
|
||||
use dalek_ff_group::{Scalar, EdwardsPoint};
|
||||
|
||||
use multiexp::multiexp;
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
|
||||
pub(crate) struct ScalarVector(pub(crate) Vec<Scalar>);
|
||||
macro_rules! math_op {
|
||||
($Op: ident, $op: ident, $f: expr) => {
|
||||
#[allow(clippy::redundant_closure_call)]
|
||||
impl $Op<Scalar> for ScalarVector {
|
||||
type Output = ScalarVector;
|
||||
fn $op(self, b: Scalar) -> ScalarVector {
|
||||
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::redundant_closure_call)]
|
||||
impl $Op<Scalar> for &ScalarVector {
|
||||
type Output = ScalarVector;
|
||||
fn $op(self, b: Scalar) -> ScalarVector {
|
||||
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::redundant_closure_call)]
|
||||
impl $Op<ScalarVector> for ScalarVector {
|
||||
type Output = ScalarVector;
|
||||
fn $op(self, b: ScalarVector) -> ScalarVector {
|
||||
debug_assert_eq!(self.len(), b.len());
|
||||
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::redundant_closure_call)]
|
||||
impl $Op<&ScalarVector> for &ScalarVector {
|
||||
type Output = ScalarVector;
|
||||
fn $op(self, b: &ScalarVector) -> ScalarVector {
|
||||
debug_assert_eq!(self.len(), b.len());
|
||||
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
math_op!(Add, add, |(a, b): (&Scalar, &Scalar)| *a + *b);
|
||||
math_op!(Sub, sub, |(a, b): (&Scalar, &Scalar)| *a - *b);
|
||||
math_op!(Mul, mul, |(a, b): (&Scalar, &Scalar)| *a * *b);
|
||||
|
||||
impl ScalarVector {
|
||||
pub(crate) fn new(len: usize) -> ScalarVector {
|
||||
ScalarVector(vec![Scalar::ZERO; len])
|
||||
}
|
||||
|
||||
pub(crate) fn powers(x: Scalar, len: usize) -> ScalarVector {
|
||||
debug_assert!(len != 0);
|
||||
|
||||
let mut res = Vec::with_capacity(len);
|
||||
res.push(Scalar::ONE);
|
||||
for i in 1 .. len {
|
||||
res.push(res[i - 1] * x);
|
||||
}
|
||||
ScalarVector(res)
|
||||
}
|
||||
|
||||
pub(crate) fn sum(mut self) -> Scalar {
|
||||
self.0.drain(..).sum()
|
||||
}
|
||||
|
||||
pub(crate) fn len(&self) -> usize {
|
||||
self.0.len()
|
||||
}
|
||||
|
||||
pub(crate) fn split(self) -> (ScalarVector, ScalarVector) {
|
||||
let (l, r) = self.0.split_at(self.0.len() / 2);
|
||||
(ScalarVector(l.to_vec()), ScalarVector(r.to_vec()))
|
||||
}
|
||||
}
|
||||
|
||||
impl Index<usize> for ScalarVector {
|
||||
type Output = Scalar;
|
||||
|
@ -87,28 +19,120 @@ impl Index<usize> for ScalarVector {
|
|||
&self.0[index]
|
||||
}
|
||||
}
|
||||
impl IndexMut<usize> for ScalarVector {
|
||||
fn index_mut(&mut self, index: usize) -> &mut Scalar {
|
||||
&mut self.0[index]
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn inner_product(a: &ScalarVector, b: &ScalarVector) -> Scalar {
|
||||
(a * b).sum()
|
||||
impl<S: Borrow<Scalar>> Add<S> for ScalarVector {
|
||||
type Output = ScalarVector;
|
||||
fn add(mut self, scalar: S) -> ScalarVector {
|
||||
for s in &mut self.0 {
|
||||
*s += scalar.borrow();
|
||||
}
|
||||
self
|
||||
}
|
||||
}
|
||||
impl<S: Borrow<Scalar>> Sub<S> for ScalarVector {
|
||||
type Output = ScalarVector;
|
||||
fn sub(mut self, scalar: S) -> ScalarVector {
|
||||
for s in &mut self.0 {
|
||||
*s -= scalar.borrow();
|
||||
}
|
||||
self
|
||||
}
|
||||
}
|
||||
impl<S: Borrow<Scalar>> Mul<S> for ScalarVector {
|
||||
type Output = ScalarVector;
|
||||
fn mul(mut self, scalar: S) -> ScalarVector {
|
||||
for s in &mut self.0 {
|
||||
*s *= scalar.borrow();
|
||||
}
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<&ScalarVector> for ScalarVector {
|
||||
type Output = ScalarVector;
|
||||
fn add(mut self, other: &ScalarVector) -> ScalarVector {
|
||||
debug_assert_eq!(self.len(), other.len());
|
||||
for (s, o) in self.0.iter_mut().zip(other.0.iter()) {
|
||||
*s += o;
|
||||
}
|
||||
self
|
||||
}
|
||||
}
|
||||
impl Sub<&ScalarVector> for ScalarVector {
|
||||
type Output = ScalarVector;
|
||||
fn sub(mut self, other: &ScalarVector) -> ScalarVector {
|
||||
debug_assert_eq!(self.len(), other.len());
|
||||
for (s, o) in self.0.iter_mut().zip(other.0.iter()) {
|
||||
*s -= o;
|
||||
}
|
||||
self
|
||||
}
|
||||
}
|
||||
impl Mul<&ScalarVector> for ScalarVector {
|
||||
type Output = ScalarVector;
|
||||
fn mul(mut self, other: &ScalarVector) -> ScalarVector {
|
||||
debug_assert_eq!(self.len(), other.len());
|
||||
for (s, o) in self.0.iter_mut().zip(other.0.iter()) {
|
||||
*s *= o;
|
||||
}
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<&[EdwardsPoint]> for &ScalarVector {
|
||||
type Output = EdwardsPoint;
|
||||
fn mul(self, b: &[EdwardsPoint]) -> EdwardsPoint {
|
||||
debug_assert_eq!(self.len(), b.len());
|
||||
multiexp(&self.0.iter().copied().zip(b.iter().copied()).collect::<Vec<_>>())
|
||||
let mut multiexp_args = self.0.iter().copied().zip(b.iter().copied()).collect::<Vec<_>>();
|
||||
let res = multiexp(&multiexp_args);
|
||||
multiexp_args.zeroize();
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn hadamard_fold(
|
||||
l: &[EdwardsPoint],
|
||||
r: &[EdwardsPoint],
|
||||
a: Scalar,
|
||||
b: Scalar,
|
||||
) -> Vec<EdwardsPoint> {
|
||||
let mut res = Vec::with_capacity(l.len() / 2);
|
||||
for i in 0 .. l.len() {
|
||||
res.push(multiexp(&[(a, l[i]), (b, r[i])]));
|
||||
impl ScalarVector {
|
||||
pub(crate) fn new(len: usize) -> Self {
|
||||
ScalarVector(vec![Scalar::ZERO; len])
|
||||
}
|
||||
|
||||
pub(crate) fn powers(x: Scalar, len: usize) -> Self {
|
||||
debug_assert!(len != 0);
|
||||
|
||||
let mut res = Vec::with_capacity(len);
|
||||
res.push(Scalar::ONE);
|
||||
res.push(x);
|
||||
for i in 2 .. len {
|
||||
res.push(res[i - 1] * x);
|
||||
}
|
||||
res.truncate(len);
|
||||
ScalarVector(res)
|
||||
}
|
||||
|
||||
pub(crate) fn len(&self) -> usize {
|
||||
self.0.len()
|
||||
}
|
||||
|
||||
pub(crate) fn sum(mut self) -> Scalar {
|
||||
self.0.drain(..).sum()
|
||||
}
|
||||
|
||||
pub(crate) fn inner_product(self, vector: &Self) -> Scalar {
|
||||
(self * vector).sum()
|
||||
}
|
||||
|
||||
pub(crate) fn weighted_inner_product(self, vector: &Self, y: &Self) -> Scalar {
|
||||
(self * vector * y).sum()
|
||||
}
|
||||
|
||||
pub(crate) fn split(mut self) -> (Self, Self) {
|
||||
debug_assert!(self.len() > 1);
|
||||
let r = self.0.split_off(self.0.len() / 2);
|
||||
debug_assert_eq!(self.len(), r.len());
|
||||
(self, ScalarVector(r))
|
||||
}
|
||||
res
|
||||
}
|
||||
|
|
|
@ -9,7 +9,6 @@ use dalek_ff_group::{Scalar, EdwardsPoint};
|
|||
use crate::ringct::bulletproofs::plus::{
|
||||
ScalarVector, PointVector, GeneratorsList, Generators,
|
||||
weighted_inner_product::{WipStatement, WipWitness},
|
||||
weighted_inner_product,
|
||||
};
|
||||
|
||||
#[test]
|
||||
|
@ -68,7 +67,7 @@ fn test_weighted_inner_product() {
|
|||
#[allow(non_snake_case)]
|
||||
let P = g_bold.multiexp(&a) +
|
||||
h_bold.multiexp(&b) +
|
||||
(g * weighted_inner_product(&a, &b, &y_vec)) +
|
||||
(g * a.clone().weighted_inner_product(&b, &y_vec)) +
|
||||
(h * alpha);
|
||||
|
||||
let statement = WipStatement::new(generators, P, y);
|
||||
|
|
Loading…
Reference in a new issue