Move common code from prepare_send into Network trait

This commit is contained in:
Luke Parker 2023-10-20 04:42:08 -04:00
parent d6bc1c1ea3
commit 4852dcaab7
No known key found for this signature in database
3 changed files with 401 additions and 380 deletions

View file

@ -47,8 +47,7 @@ use crate::{
networks::{
NetworkError, Block as BlockTrait, OutputType, Output as OutputTrait,
Transaction as TransactionTrait, SignableTransaction as SignableTransactionTrait,
Eventuality as EventualityTrait, EventualitiesTracker, AmortizeFeeRes, PreparedSend, Network,
drop_branches, amortize_fee,
Eventuality as EventualityTrait, EventualitiesTracker, Network,
},
Plan,
};
@ -320,6 +319,52 @@ impl Bitcoin {
.unwrap()
}
}
async fn make_signable_transaction(
&self,
plan: &Plan<Self>,
fee: Fee,
calculating_fee: bool,
) -> Option<BSignableTransaction> {
let mut payments = vec![];
for payment in &plan.payments {
// If we're solely estimating the fee, don't specify the actual amount
// This won't affect the fee calculation yet will ensure we don't hit a not enough funds
// error
payments.push((
payment.address.0.clone(),
if calculating_fee { Self::DUST } else { payment.amount },
));
}
match BSignableTransaction::new(
plan.inputs.iter().map(|input| input.output.clone()).collect(),
&payments,
plan.change.as_ref().map(|change| change.0.clone()),
None,
fee.0,
) {
Ok(signable) => Some(signable),
Err(TransactionError::NoInputs) => {
panic!("trying to create a bitcoin transaction without inputs")
}
// No outputs left and the change isn't worth enough
Err(TransactionError::NoOutputs) => None,
// amortize_fee removes payments which fall below the dust threshold
Err(TransactionError::DustPayment) => panic!("dust payment despite removing dust"),
Err(TransactionError::TooMuchData) => panic!("too much data despite not specifying data"),
Err(TransactionError::TooLowFee) => {
panic!("created a transaction whose fee is below the minimum")
}
Err(TransactionError::NotEnoughFunds) => {
// Mot even enough funds to pay the fee
None
}
Err(TransactionError::TooLargeTransaction) => {
panic!("created a too large transaction despite limiting inputs/outputs")
}
}
}
}
#[async_trait]
@ -504,110 +549,34 @@ impl Network for Bitcoin {
res
}
async fn prepare_send(
async fn needed_fee(
&self,
_: usize,
mut plan: Plan<Self>,
fee: Fee,
operating_costs: u64,
) -> Result<PreparedSend<Self>, NetworkError> {
let signable = |plan: &Plan<Self>, tx_fee: Option<_>| {
let mut payments = vec![];
for payment in &plan.payments {
// If we're solely estimating the fee, don't specify the actual amount
// This won't affect the fee calculation yet will ensure we don't hit a not enough funds
// error
payments.push((
payment.address.0.clone(),
if tx_fee.is_none() { Self::DUST } else { payment.amount },
));
}
match BSignableTransaction::new(
plan.inputs.iter().map(|input| input.output.clone()).collect(),
&payments,
plan.change.as_ref().map(|change| change.0.clone()),
None,
fee.0,
) {
Ok(signable) => Some(signable),
Err(TransactionError::NoInputs) => {
panic!("trying to create a bitcoin transaction without inputs")
}
// No outputs left and the change isn't worth enough
Err(TransactionError::NoOutputs) => None,
// amortize_fee removes payments which fall below the dust threshold
Err(TransactionError::DustPayment) => panic!("dust payment despite removing dust"),
Err(TransactionError::TooMuchData) => panic!("too much data despite not specifying data"),
Err(TransactionError::TooLowFee) => {
panic!("created a transaction whose fee is below the minimum")
}
Err(TransactionError::NotEnoughFunds) => {
if tx_fee.is_none() {
// Mot even enough funds to pay the fee
None
} else {
panic!("not enough funds for bitcoin TX despite amortizing the fee")
}
}
Err(TransactionError::TooLargeTransaction) => {
panic!("created a too large transaction despite limiting inputs/outputs")
}
}
};
let tx_fee = match signable(&plan, None) {
Some(tx) => tx.needed_fee(),
None => {
return Ok(PreparedSend {
tx: None,
post_fee_branches: drop_branches(&plan),
// This plan expects a change output valued at sum(inputs) - sum(outputs)
// Since we can no longer create this change output, it becomes an operating cost
// TODO: Look at input restoration to reduce this operating cost
operating_costs: operating_costs +
if plan.change.is_some() { plan.expected_change() } else { 0 },
});
}
};
let AmortizeFeeRes { post_fee_branches, mut operating_costs } =
amortize_fee(&mut plan, operating_costs, tx_fee);
let signable = signable(&plan, Some(tx_fee)).unwrap();
if plan.change.is_some() {
// Now that we've amortized the fee (which may raise the expected change value), grab it
// again
// Then, subtract the TX fee
//
// The first `expected_change` call gets the theoretically expected change from the
// theoretical Plan object, and accordingly doesn't subtract the fee (expecting the payments
// to bare it)
// This call wants the actual value, post-amortization over outputs, and since Plan is
// unaware of the fee, has to manually adjust
let on_chain_expected_change = plan.expected_change() - tx_fee;
// If the change value is less than the dust threshold, it becomes an operating cost
// This may be slightly inaccurate as dropping payments may reduce the fee, raising the
// change above dust
// That's fine since it'd have to be in a very precarious state AND then it's over-eager in
// tabulating costs
if on_chain_expected_change < Self::DUST {
operating_costs += on_chain_expected_change;
}
plan: &Plan<Self>,
fee_rate: Fee,
) -> Result<Option<u64>, NetworkError> {
Ok(
self
.make_signable_transaction(plan, fee_rate, true)
.await
.map(|signable| signable.needed_fee()),
)
}
async fn signable_transaction(
&self,
_: usize,
plan: &Plan<Self>,
fee_rate: Fee,
) -> Result<Option<(Self::SignableTransaction, Self::Eventuality)>, NetworkError> {
Ok(self.make_signable_transaction(plan, fee_rate, false).await.map(|signable| {
let plan_binding_input = *plan.inputs[0].output.outpoint();
let outputs = signable.outputs().to_vec();
Ok(PreparedSend {
tx: Some((
(
SignableTransaction { transcript: plan.transcript(), actual: signable },
Eventuality { plan_binding_input, outputs },
)),
post_fee_branches,
operating_costs,
})
)
}))
}
async fn attempt_send(
@ -650,7 +619,7 @@ impl Network for Bitcoin {
}
#[cfg(test)]
async fn get_fee(&self) -> Self::Fee {
async fn get_fee(&self) -> Fee {
Fee(1)
}

View file

@ -199,7 +199,7 @@ pub struct PostFeeBranch {
}
// Return the PostFeeBranches needed when dropping a transaction
pub fn drop_branches<N: Network>(plan: &Plan<N>) -> Vec<PostFeeBranch> {
fn drop_branches<N: Network>(plan: &Plan<N>) -> Vec<PostFeeBranch> {
let mut branch_outputs = vec![];
for payment in &plan.payments {
if payment.address == N::branch_address(plan.key) {
@ -209,105 +209,6 @@ pub fn drop_branches<N: Network>(plan: &Plan<N>) -> Vec<PostFeeBranch> {
branch_outputs
}
pub struct AmortizeFeeRes {
post_fee_branches: Vec<PostFeeBranch>,
operating_costs: u64,
}
// Amortize a fee over the plan's payments
pub fn amortize_fee<N: Network>(
plan: &mut Plan<N>,
operating_costs: u64,
tx_fee: u64,
) -> AmortizeFeeRes {
let total_fee = {
let mut total_fee = tx_fee;
// Since we're creating a change output, letting us recoup coins, amortize the operating costs
// as well
if plan.change.is_some() {
total_fee += operating_costs;
}
total_fee
};
let original_outputs = plan.payments.iter().map(|payment| payment.amount).sum::<u64>();
// If this isn't enough for the total fee, drop and move on
if original_outputs < total_fee {
let mut remaining_operating_costs = operating_costs;
if plan.change.is_some() {
// Operating costs increase by the TX fee
remaining_operating_costs += tx_fee;
// Yet decrease by the payments we managed to drop
remaining_operating_costs = remaining_operating_costs.saturating_sub(original_outputs);
}
return AmortizeFeeRes {
post_fee_branches: drop_branches(plan),
operating_costs: remaining_operating_costs,
};
}
// Amortize the transaction fee across outputs
let mut payments_len = u64::try_from(plan.payments.len()).unwrap();
// Use a formula which will round up
let per_output_fee = |payments| (total_fee + (payments - 1)) / payments;
let post_fee = |payment: &Payment<N>, per_output_fee| {
let mut post_fee = payment.amount.checked_sub(per_output_fee);
// If this is under our dust threshold, drop it
if let Some(amount) = post_fee {
if amount < N::DUST {
post_fee = None;
}
}
post_fee
};
// If we drop outputs for being less than the fee, we won't successfully reduce the amount spent
// (dropping a 800 output due to a 1000 fee leaves 200 we still have to deduct)
// Do initial runs until the amount of output we will drop is known
while {
let last = payments_len;
payments_len = u64::try_from(
plan
.payments
.iter()
.filter(|payment| post_fee(payment, per_output_fee(payments_len)).is_some())
.count(),
)
.unwrap();
last != payments_len
} {}
// Now that we know how many outputs will survive, calculate the actual per_output_fee
let per_output_fee = per_output_fee(payments_len);
let mut branch_outputs = vec![];
for payment in plan.payments.iter_mut() {
let post_fee = post_fee(payment, per_output_fee);
// Note the branch output, if this is one
if payment.address == N::branch_address(plan.key) {
branch_outputs.push(PostFeeBranch { expected: payment.amount, actual: post_fee });
}
payment.amount = post_fee.unwrap_or(0);
}
// Drop payments now worth 0
plan.payments = plan.payments.drain(..).filter(|payment| payment.amount != 0).collect();
// Sanity check the fee wa successfully amortized
let new_outputs = plan.payments.iter().map(|payment| payment.amount).sum::<u64>();
assert!((new_outputs + total_fee) <= original_outputs);
AmortizeFeeRes {
post_fee_branches: branch_outputs,
operating_costs: if plan.change.is_none() {
// If the change is None, this had no effect on the operating costs
operating_costs
} else {
// Since the change is some, and we successfully amortized, the operating costs were recouped
0
},
}
}
pub struct PreparedSend<N: Network> {
/// None for the transaction if the SignableTransaction was dropped due to lack of value.
pub tx: Option<(N::SignableTransaction, N::Eventuality)>,
@ -323,7 +224,7 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
/// The type representing the fee for this network.
// This should likely be a u64, wrapped in a type which implements appropriate fee logic.
type Fee: Copy;
type Fee: Send + Copy;
/// The type representing the transaction for this network.
type Transaction: Transaction<Self>;
@ -408,16 +309,195 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
block: &Self::Block,
) -> HashMap<[u8; 32], (usize, Self::Transaction)>;
/// Returns the needed fee to fulfill this Plan at this fee rate.
///
/// Returns None if this Plan isn't fulfillable (such as when the fee exceeds the input value).
async fn needed_fee(
&self,
block_number: usize,
plan: &Plan<Self>,
fee_rate: Self::Fee,
) -> Result<Option<u64>, NetworkError>;
/// Create a SignableTransaction for the given Plan.
///
/// The expected flow is:
/// 1) Call needed_fee
/// 2) If the Plan is fulfillable, amortize the fee
/// 3) Call signable_transaction *which MUST NOT return None if the above was done properly*
async fn signable_transaction(
&self,
block_number: usize,
plan: &Plan<Self>,
fee_rate: Self::Fee,
) -> Result<Option<(Self::SignableTransaction, Self::Eventuality)>, NetworkError>;
/// Prepare a SignableTransaction for a transaction.
// TODO: These have common code inside them
// Provide prepare_send, have coins offers prepare_send_inner
async fn prepare_send(
&self,
block_number: usize,
plan: Plan<Self>,
mut plan: Plan<Self>,
fee_rate: Self::Fee,
running_operating_costs: u64,
) -> Result<PreparedSend<Self>, NetworkError>;
operating_costs: u64,
) -> Result<PreparedSend<Self>, NetworkError> {
// Sanity check this has at least one output planned
assert!((!plan.payments.is_empty()) || plan.change.is_some());
let Some(fee) = self.needed_fee(block_number, &plan, fee_rate).await? else {
// This Plan is not fulfillable
// TODO: Have Plan explicitly distinguish payments and branches in two separate Vecs?
return Ok(PreparedSend {
tx: None,
// Have all of its branches dropped
post_fee_branches: drop_branches(&plan),
// This plan expects a change output valued at sum(inputs) - sum(outputs)
// Since we can no longer create this change output, it becomes an operating cost
// TODO: Look at input restoration to reduce this operating cost
operating_costs: operating_costs +
if plan.change.is_some() { plan.expected_change() } else { 0 },
});
};
let (post_fee_branches, mut operating_costs) = {
pub struct AmortizeFeeRes {
post_fee_branches: Vec<PostFeeBranch>,
operating_costs: u64,
}
// Amortize a fee over the plan's payments
fn amortize_fee<N: Network>(
plan: &mut Plan<N>,
operating_costs: u64,
tx_fee: u64,
) -> AmortizeFeeRes {
let total_fee = {
let mut total_fee = tx_fee;
// Since we're creating a change output, letting us recoup coins, amortize the operating
// costs
// as well
if plan.change.is_some() {
total_fee += operating_costs;
}
total_fee
};
let original_outputs = plan.payments.iter().map(|payment| payment.amount).sum::<u64>();
// If this isn't enough for the total fee, drop and move on
if original_outputs < total_fee {
let mut remaining_operating_costs = operating_costs;
if plan.change.is_some() {
// Operating costs increase by the TX fee
remaining_operating_costs += tx_fee;
// Yet decrease by the payments we managed to drop
remaining_operating_costs = remaining_operating_costs.saturating_sub(original_outputs);
}
return AmortizeFeeRes {
post_fee_branches: drop_branches(plan),
operating_costs: remaining_operating_costs,
};
}
// Amortize the transaction fee across outputs
let mut payments_len = u64::try_from(plan.payments.len()).unwrap();
// Use a formula which will round up
let per_output_fee = |payments| (total_fee + (payments - 1)) / payments;
let post_fee = |payment: &Payment<N>, per_output_fee| {
let mut post_fee = payment.amount.checked_sub(per_output_fee);
// If this is under our dust threshold, drop it
if let Some(amount) = post_fee {
if amount < N::DUST {
post_fee = None;
}
}
post_fee
};
// If we drop outputs for being less than the fee, we won't successfully reduce the amount
// spent (dropping a 800 output due to a 1000 fee leaves 200 we still have to deduct)
// Do initial runs until the amount of output we will drop is known
while {
let last = payments_len;
payments_len = u64::try_from(
plan
.payments
.iter()
.filter(|payment| post_fee(payment, per_output_fee(payments_len)).is_some())
.count(),
)
.unwrap();
last != payments_len
} {}
// Now that we know how many outputs will survive, calculate the actual per_output_fee
let per_output_fee = per_output_fee(payments_len);
let mut branch_outputs = vec![];
for payment in plan.payments.iter_mut() {
let post_fee = post_fee(payment, per_output_fee);
// Note the branch output, if this is one
if payment.address == N::branch_address(plan.key) {
branch_outputs.push(PostFeeBranch { expected: payment.amount, actual: post_fee });
}
payment.amount = post_fee.unwrap_or(0);
}
// Drop payments now worth 0
plan.payments = plan.payments.drain(..).filter(|payment| payment.amount != 0).collect();
// Sanity check the fee wa successfully amortized
let new_outputs = plan.payments.iter().map(|payment| payment.amount).sum::<u64>();
assert!((new_outputs + total_fee) <= original_outputs);
AmortizeFeeRes {
post_fee_branches: branch_outputs,
operating_costs: if plan.change.is_none() {
// If the change is None, this had no effect on the operating costs
operating_costs
} else {
// Since the change is some, and we successfully amortized, the operating costs were
// recouped
0
},
}
}
let AmortizeFeeRes { post_fee_branches, operating_costs } =
amortize_fee(&mut plan, operating_costs, fee);
(post_fee_branches, operating_costs)
};
let Some(tx) = self.signable_transaction(block_number, &plan, fee_rate).await? else {
panic!(
"{}. post-amortization plan: {:?}, successfully amoritized fee: {}",
"signable_transaction returned None for a TX we prior successfully calculated the fee for",
&plan,
fee,
)
};
if plan.change.is_some() {
// Now that we've amortized the fee (which may raise the expected change value), grab it
// again
// Then, subtract the TX fee
//
// The first `expected_change` call gets the theoretically expected change from the
// theoretical Plan object, and accordingly doesn't subtract the fee (expecting the payments
// to bare it)
// This call wants the actual value, post-amortization over outputs, and since Plan is
// unaware of the fee, has to manually adjust
let on_chain_expected_change = plan.expected_change() - fee;
// If the change value is less than the dust threshold, it becomes an operating cost
// This may be slightly inaccurate as dropping payments may reduce the fee, raising the
// change above dust
// That's fine since it'd have to be in a very precarious state AND then it's over-eager in
// tabulating costs
if on_chain_expected_change < Self::DUST {
operating_costs += on_chain_expected_change;
}
}
Ok(PreparedSend { tx: Some(tx), post_fee_branches, operating_costs })
}
/// Attempt to sign a SignableTransaction.
async fn attempt_send(

View file

@ -38,8 +38,7 @@ use crate::{
networks::{
NetworkError, Block as BlockTrait, OutputType, Output as OutputTrait,
Transaction as TransactionTrait, SignableTransaction as SignableTransactionTrait,
Eventuality as EventualityTrait, EventualitiesTracker, AmortizeFeeRes, PreparedSend, Network,
drop_branches, amortize_fee,
Eventuality as EventualityTrait, EventualitiesTracker, Network,
},
};
@ -207,6 +206,125 @@ impl Monero {
scanner
}
async fn make_signable_transaction(
&self,
block_number: usize,
mut plan: Plan<Self>,
fee_rate: Fee,
calculating_fee: bool,
) -> Result<Option<(RecommendedTranscript, MSignableTransaction)>, NetworkError> {
// Get the protocol for the specified block number
// For now, this should just be v16, the latest deployed protocol, since there's no upcoming
// hard fork to be mindful of
let get_protocol = || Protocol::v16;
#[cfg(not(test))]
let protocol = get_protocol();
// If this is a test, we won't be using a mainnet node and need a distinct protocol
// determination
// Just use whatever the node expects
#[cfg(test)]
let protocol = self.rpc.get_protocol().await.unwrap();
// Hedge against the above codegen failing by having an always included runtime check
if !cfg!(test) {
assert_eq!(protocol, get_protocol());
}
// Check a fork hasn't occurred which this processor hasn't been updated for
assert_eq!(protocol, self.rpc.get_protocol().await.map_err(|_| NetworkError::ConnectionError)?);
let spendable_outputs = plan.inputs.iter().cloned().map(|input| input.0).collect::<Vec<_>>();
let mut transcript = plan.transcript();
// All signers need to select the same decoys
// All signers use the same height and a seeded RNG to make sure they do so.
let decoys = Decoys::select(
&mut ChaCha20Rng::from_seed(transcript.rng_seed(b"decoys")),
&self.rpc,
protocol.ring_len(),
block_number + 1,
&spendable_outputs,
)
.await
.map_err(|_| NetworkError::ConnectionError)?;
let inputs = spendable_outputs.into_iter().zip(decoys).collect::<Vec<_>>();
// Monero requires at least two outputs
// If we only have one output planned, add a dummy payment
let outputs = plan.payments.len() + usize::from(u8::from(plan.change.is_some()));
if outputs == 0 {
return Ok(None);
} else if outputs == 1 {
plan.payments.push(Payment {
address: Address::new(
ViewPair::new(EdwardsPoint::generator().0, Zeroizing::new(Scalar::ONE.0))
.address(MoneroNetwork::Mainnet, AddressSpec::Standard),
)
.unwrap(),
amount: 0,
data: None,
});
}
let mut payments = vec![];
for payment in &plan.payments {
// If we're solely estimating the fee, don't actually specify an amount
// This won't affect the fee calculation yet will ensure we don't hit an out of funds error
payments
.push((payment.address.clone().into(), if calculating_fee { 0 } else { payment.amount }));
}
match MSignableTransaction::new(
protocol,
// Use the plan ID as the r_seed
// This perfectly binds the plan while simultaneously allowing verifying the plan was
// executed with no additional communication
Some(Zeroizing::new(plan.id())),
inputs.clone(),
payments,
plan.change.map(|change| Change::fingerprintable(change.into())),
vec![],
fee_rate,
) {
Ok(signable) => Ok(Some((transcript, signable))),
Err(e) => match e {
TransactionError::MultiplePaymentIds => {
panic!("multiple payment IDs despite not supporting integrated addresses");
}
TransactionError::NoInputs |
TransactionError::NoOutputs |
TransactionError::InvalidDecoyQuantity |
TransactionError::NoChange |
TransactionError::TooManyOutputs |
TransactionError::TooMuchData |
TransactionError::TooLargeTransaction |
TransactionError::WrongPrivateKey => {
panic!("created an Monero invalid transaction: {e}");
}
TransactionError::ClsagError(_) |
TransactionError::InvalidTransaction(_) |
TransactionError::FrostError(_) => {
panic!("supposedly unreachable (at this time) Monero error: {e}");
}
TransactionError::NotEnoughFunds { inputs, outputs, fee } => {
log::debug!(
"Monero NotEnoughFunds. inputs: {:?}, outputs: {:?}, fee: {fee}",
inputs,
outputs
);
Ok(None)
}
TransactionError::RpcError(e) => {
log::error!("RpcError when preparing transaction: {e:?}");
Err(NetworkError::ConnectionError)
}
},
}
}
#[cfg(test)]
fn test_view_pair() -> ViewPair {
ViewPair::new(*EdwardsPoint::generator(), Zeroizing::new(Scalar::ONE.0))
@ -394,179 +512,33 @@ impl Network for Monero {
res
}
async fn prepare_send(
async fn needed_fee(
&self,
block_number: usize,
mut plan: Plan<Self>,
fee: Fee,
operating_costs: u64,
) -> Result<PreparedSend<Self>, NetworkError> {
// Sanity check this has at least one output planned
assert!((!plan.payments.is_empty()) || plan.change.is_some());
// Get the protocol for the specified block number
// For now, this should just be v16, the latest deployed protocol, since there's no upcoming
// hard fork to be mindful of
let get_protocol = || Protocol::v16;
#[cfg(not(test))]
let protocol = get_protocol();
// If this is a test, we won't be using a mainnet node and need a distinct protocol
// determination
// Just use whatever the node expects
#[cfg(test)]
let protocol = self.rpc.get_protocol().await.unwrap();
// Hedge against the above codegen failing by having an always included runtime check
if !cfg!(test) {
assert_eq!(protocol, get_protocol());
}
// Check a fork hasn't occurred which this processor hasn't been updated for
assert_eq!(protocol, self.rpc.get_protocol().await.map_err(|_| NetworkError::ConnectionError)?);
let spendable_outputs = plan.inputs.iter().cloned().map(|input| input.0).collect::<Vec<_>>();
let mut transcript = plan.transcript();
// All signers need to select the same decoys
// All signers use the same height and a seeded RNG to make sure they do so.
let decoys = Decoys::select(
&mut ChaCha20Rng::from_seed(transcript.rng_seed(b"decoys")),
&self.rpc,
protocol.ring_len(),
block_number + 1,
&spendable_outputs,
plan: &Plan<Self>,
fee_rate: Fee,
) -> Result<Option<u64>, NetworkError> {
Ok(
self
.make_signable_transaction(block_number, plan.clone(), fee_rate, true)
.await?
.map(|(_, signable)| signable.fee()),
)
.await
.map_err(|_| NetworkError::ConnectionError)?;
let inputs = spendable_outputs.into_iter().zip(decoys).collect::<Vec<_>>();
let signable = |mut plan: Plan<Self>, tx_fee: Option<_>| {
// Monero requires at least two outputs
// If we only have one output planned, add a dummy payment
let outputs = plan.payments.len() + usize::from(u8::from(plan.change.is_some()));
if outputs == 0 {
return Ok(None);
} else if outputs == 1 {
plan.payments.push(Payment {
address: Address::new(
ViewPair::new(EdwardsPoint::generator().0, Zeroizing::new(Scalar::ONE.0))
.address(MoneroNetwork::Mainnet, AddressSpec::Standard),
)
.unwrap(),
amount: 0,
data: None,
});
}
let mut payments = vec![];
for payment in &plan.payments {
// If we're solely estimating the fee, don't actually specify an amount
// This won't affect the fee calculation yet will ensure we don't hit an out of funds error
payments.push((
payment.address.clone().into(),
if tx_fee.is_none() { 0 } else { payment.amount },
));
}
match MSignableTransaction::new(
protocol,
// Use the plan ID as the r_seed
// This perfectly binds the plan while simultaneously allowing verifying the plan was
// executed with no additional communication
Some(Zeroizing::new(plan.id())),
inputs.clone(),
payments,
plan.change.map(|change| Change::fingerprintable(change.into())),
vec![],
fee,
) {
Ok(signable) => Ok(Some(signable)),
Err(e) => match e {
TransactionError::MultiplePaymentIds => {
panic!("multiple payment IDs despite not supporting integrated addresses");
}
TransactionError::NoInputs |
TransactionError::NoOutputs |
TransactionError::InvalidDecoyQuantity |
TransactionError::NoChange |
TransactionError::TooManyOutputs |
TransactionError::TooMuchData |
TransactionError::TooLargeTransaction |
TransactionError::WrongPrivateKey => {
panic!("created an Monero invalid transaction: {e}");
}
TransactionError::ClsagError(_) |
TransactionError::InvalidTransaction(_) |
TransactionError::FrostError(_) => {
panic!("supposedly unreachable (at this time) Monero error: {e}");
}
TransactionError::NotEnoughFunds { inputs, outputs, fee } => {
if let Some(tx_fee) = tx_fee {
panic!(
"{}. in: {inputs}, out: {outputs}, fee: {fee}, prior estimated fee: {tx_fee}",
"didn't have enough funds for a Monero TX",
);
} else {
Ok(None)
}
}
TransactionError::RpcError(e) => {
log::error!("RpcError when preparing transaction: {e:?}");
Err(NetworkError::ConnectionError)
}
},
}
};
let tx_fee = match signable(plan.clone(), None)? {
Some(tx) => tx.fee(),
None => {
return Ok(PreparedSend {
tx: None,
post_fee_branches: drop_branches(&plan),
// This plan expects a change output valued at sum(inputs) - sum(outputs)
// Since we can no longer create this change output, it becomes an operating cost
// TODO: Look at input restoration to reduce this operating cost
operating_costs: operating_costs +
if plan.change.is_some() { plan.expected_change() } else { 0 },
});
}
};
let AmortizeFeeRes { post_fee_branches, mut operating_costs } =
amortize_fee(&mut plan, operating_costs, tx_fee);
let plan_change_is_some = plan.change.is_some();
let plan_expected_change = plan.expected_change();
let signable = signable(plan, Some(tx_fee))?.unwrap();
if plan_change_is_some {
// Now that we've amortized the fee (which may raise the expected change value), grab it
// again
// Then, subtract the TX fee
//
// The first `expected_change` call gets the theoretically expected change from the
// theoretical Plan object, and accordingly doesn't subtract the fee (expecting the payments
// to bare it)
// This call wants the actual value, post-amortization over outputs, and since Plan is
// unaware of the fee, has to manually adjust
let on_chain_expected_change = plan_expected_change - tx_fee;
// If the change value is less than the dust threshold, it becomes an operating cost
// This may be slightly inaccurate as dropping payments may reduce the fee, raising the
// change above dust
// That's fine since it'd have to be in a very precarious state AND then it's over-eager in
// tabulating costs
if on_chain_expected_change < Self::DUST {
operating_costs += on_chain_expected_change;
}
}
async fn signable_transaction(
&self,
block_number: usize,
plan: &Plan<Self>,
fee_rate: Fee,
) -> Result<Option<(Self::SignableTransaction, Self::Eventuality)>, NetworkError> {
Ok(self.make_signable_transaction(block_number, plan.clone(), fee_rate, false).await?.map(
|(transcript, signable)| {
let signable = SignableTransaction { transcript, actual: signable };
let eventuality = signable.actual.eventuality().unwrap();
Ok(PreparedSend { tx: Some((signable, eventuality)), post_fee_branches, operating_costs })
(signable, eventuality)
},
))
}
async fn attempt_send(
@ -604,7 +576,7 @@ impl Network for Monero {
}
#[cfg(test)]
async fn get_fee(&self) -> Self::Fee {
async fn get_fee(&self) -> Fee {
use monero_serai::wallet::FeePriority;
self.rpc.get_fee(self.rpc.get_protocol().await.unwrap(), FeePriority::Low).await.unwrap()