mirror of
https://github.com/serai-dex/serai.git
synced 2025-01-03 17:40:34 +00:00
3.2.1, 3.2.4, 3.2.5. Documentation and tests
This commit is contained in:
parent
686a5ee364
commit
40a6672547
2 changed files with 119 additions and 21 deletions
|
@ -13,30 +13,69 @@ use ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
|
|||
|
||||
use crate::{constant_time, math, from_uint};
|
||||
|
||||
const MODULUS: U256 =
|
||||
U256::from_be_hex("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed");
|
||||
|
||||
const WIDE_MODULUS: U512 = U512::from_be_hex(concat!(
|
||||
"0000000000000000000000000000000000000000000000000000000000000000",
|
||||
"7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed"
|
||||
));
|
||||
// 2^255 - 19
|
||||
// Uses saturating_sub because checked_sub isn't available at compile time
|
||||
const MODULUS: U256 = U256::from_u8(1).shl_vartime(255).saturating_sub(&U256::from_u8(19));
|
||||
const WIDE_MODULUS: U512 = U256::ZERO.concat(&MODULUS);
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
|
||||
pub struct FieldElement(U256);
|
||||
|
||||
pub const MOD_3_8: FieldElement =
|
||||
FieldElement(MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)));
|
||||
/*
|
||||
The following is a valid const definition of sqrt(-1) yet exceeds the const_eval_limit by 24x.
|
||||
Accordingly, it'd only be usable on a nightly compiler with the following crate attributes:
|
||||
#![feature(const_eval_limit)]
|
||||
#![const_eval_limit = "24000000"]
|
||||
|
||||
pub const MOD_5_8: FieldElement = FieldElement(MOD_3_8.0.saturating_sub(&U256::ONE));
|
||||
const SQRT_M1: FieldElement = {
|
||||
// Formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
|
||||
// 2 ** ((MODULUS - 1) // 4) % MODULUS
|
||||
let base = U256::from_u8(2);
|
||||
let exp = MODULUS.saturating_sub(&U256::from_u8(1)).wrapping_div(&U256::from_u8(4));
|
||||
|
||||
pub const EDWARDS_D: FieldElement = FieldElement(U256::from_be_hex(
|
||||
"52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3",
|
||||
));
|
||||
const fn mul(x: U256, y: U256) -> U256 {
|
||||
let wide = U256::mul_wide(&x, &y);
|
||||
let wide = U256::concat(&wide.1, &wide.0);
|
||||
wide.wrapping_rem(&WIDE_MODULUS).split().1
|
||||
}
|
||||
|
||||
pub const SQRT_M1: FieldElement = FieldElement(U256::from_be_hex(
|
||||
// Perform the pow via multiply and square
|
||||
let mut res = U256::ONE;
|
||||
// Iterate from highest bit to lowest bit
|
||||
let mut bit = 255;
|
||||
loop {
|
||||
if bit != 255 {
|
||||
res = mul(res, res);
|
||||
}
|
||||
|
||||
// Reverse from little endian to big endian
|
||||
if exp.bit_vartime(bit) == 1 {
|
||||
res = mul(res, base);
|
||||
}
|
||||
|
||||
if bit == 0 {
|
||||
break;
|
||||
}
|
||||
bit -= 1;
|
||||
}
|
||||
|
||||
FieldElement(res)
|
||||
};
|
||||
*/
|
||||
|
||||
// Use a constant since we can't calculate it at compile-time without a nightly compiler
|
||||
// Even without const_eval_limit, it'd take ~30s to calculate, which isn't worth it
|
||||
const SQRT_M1: FieldElement = FieldElement(U256::from_be_hex(
|
||||
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
|
||||
));
|
||||
|
||||
// Constant useful in calculating square roots (RFC-8032 sqrt8k5's exponent used to calculate y)
|
||||
const MOD_3_8: FieldElement =
|
||||
FieldElement(MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)));
|
||||
|
||||
// Constant useful in sqrt_ratio_i (sqrt(u / v))
|
||||
const MOD_5_8: FieldElement = FieldElement(MOD_3_8.0.saturating_sub(&U256::ONE));
|
||||
|
||||
fn reduce(x: U512) -> U256 {
|
||||
U256::from_le_slice(&x.reduce(&WIDE_MODULUS).unwrap().to_le_bytes()[.. 32])
|
||||
}
|
||||
|
@ -93,6 +132,7 @@ impl Field for FieldElement {
|
|||
CtOption::new(self.pow(NEG_2), !self.is_zero())
|
||||
}
|
||||
|
||||
// RFC-8032 sqrt8k5
|
||||
fn sqrt(&self) -> CtOption<Self> {
|
||||
let tv1 = self.pow(MOD_3_8);
|
||||
let tv2 = tv1 * SQRT_M1;
|
||||
|
@ -113,14 +153,20 @@ impl PrimeField for FieldElement {
|
|||
self.0.to_le_bytes()
|
||||
}
|
||||
|
||||
// This was set per the specification in the ff crate docs
|
||||
// The number of leading zero bits in the little-endian bit representation of (modulus - 1)
|
||||
const S: u32 = 2;
|
||||
fn is_odd(&self) -> Choice {
|
||||
self.0.is_odd()
|
||||
}
|
||||
fn multiplicative_generator() -> Self {
|
||||
// This was calculated with the method from the ff crate docs
|
||||
// SageMath GF(modulus).primitive_element()
|
||||
2u64.into()
|
||||
}
|
||||
fn root_of_unity() -> Self {
|
||||
// This was calculated via the formula from the ff crate docs
|
||||
// Self::multiplicative_generator() ** ((modulus - 1) >> Self::S)
|
||||
FieldElement(U256::from_be_hex(
|
||||
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
|
||||
))
|
||||
|
@ -172,27 +218,67 @@ impl FieldElement {
|
|||
res
|
||||
}
|
||||
|
||||
/// The square root of u/v, as used for Ed25519 point decoding (RFC 8032 5.1.3) and within
|
||||
/// Ristretto (5.1 Extracting an Inverse Square Root).
|
||||
///
|
||||
/// The result is only a valid square root if the Choice is true.
|
||||
/// RFC 8032 simply fails if there isn't a square root, leaving any return value undefined.
|
||||
/// Ristretto explicitly returns 0 or sqrt((SQRT_M1 * u) / v).
|
||||
pub fn sqrt_ratio_i(u: FieldElement, v: FieldElement) -> (Choice, FieldElement) {
|
||||
let i = SQRT_M1;
|
||||
|
||||
let v3 = v.square() * v;
|
||||
let v7 = v3.square() * v;
|
||||
// Candidate root
|
||||
let mut r = (u * v3) * (u * v7).pow(MOD_5_8);
|
||||
|
||||
// 8032 3.1
|
||||
let check = v * r.square();
|
||||
let correct_sign = check.ct_eq(&u);
|
||||
let flipped_sign = check.ct_eq(&(-u));
|
||||
let flipped_sign_i = check.ct_eq(&((-u) * i));
|
||||
// 8032 3.2 conditional
|
||||
let neg_u = -u;
|
||||
let flipped_sign = check.ct_eq(&neg_u);
|
||||
// Ristretto Step 5
|
||||
let flipped_sign_i = check.ct_eq(&(neg_u * i));
|
||||
|
||||
// 3.2 set
|
||||
r.conditional_assign(&(r * i), flipped_sign | flipped_sign_i);
|
||||
|
||||
let r_is_negative = r.is_odd();
|
||||
r.conditional_negate(r_is_negative);
|
||||
// Always return the even root, per Ristretto
|
||||
// This doesn't break Ed25519 point decoding as that doesn't expect these steps to return a
|
||||
// specific root
|
||||
// Ed25519 points include a dedicated sign bit to determine which root to use, so at worst
|
||||
// this is a pointless inefficiency
|
||||
r.conditional_negate(r.is_odd());
|
||||
|
||||
(correct_sign | flipped_sign, r)
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_wide_modulus() {
|
||||
let mut wide = [0; 64];
|
||||
wide[.. 32].copy_from_slice(&MODULUS.to_le_bytes());
|
||||
assert_eq!(wide, WIDE_MODULUS.to_le_bytes());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sqrt_m1() {
|
||||
// Test equivalence against the known constant value
|
||||
const SQRT_M1_MAGIC: U256 =
|
||||
U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0");
|
||||
assert_eq!(SQRT_M1.0, SQRT_M1_MAGIC);
|
||||
|
||||
// Also test equivalence against the result of the formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
|
||||
// 2 ** ((MODULUS - 1) // 4) % MODULUS
|
||||
assert_eq!(
|
||||
SQRT_M1,
|
||||
FieldElement::from(2u8).pow(FieldElement(
|
||||
(FieldElement::zero() - FieldElement::one()).0.wrapping_div(&U256::from(4u8))
|
||||
))
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field() {
|
||||
ff_group_tests::prime_field::test_prime_field_bits::<FieldElement>();
|
||||
|
|
|
@ -177,6 +177,7 @@ constant_time!(Scalar, DScalar);
|
|||
math_neg!(Scalar, Scalar, DScalar::add, DScalar::sub, DScalar::mul);
|
||||
from_uint!(Scalar, DScalar);
|
||||
|
||||
// Ed25519 order/scalar modulus
|
||||
const MODULUS: U256 =
|
||||
U256::from_be_hex("1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed");
|
||||
|
||||
|
@ -272,19 +273,25 @@ impl PrimeField for Scalar {
|
|||
self.0.to_bytes()
|
||||
}
|
||||
|
||||
// This was set per the specification in the ff crate docs
|
||||
// The number of leading zero bits in the little-endian bit representation of (modulus - 1)
|
||||
const S: u32 = 2;
|
||||
fn is_odd(&self) -> Choice {
|
||||
choice(self.to_le_bits()[0])
|
||||
}
|
||||
fn multiplicative_generator() -> Self {
|
||||
// This was calculated with the method from the ff crate docs
|
||||
// SageMath GF(modulus).primitive_element()
|
||||
2u64.into()
|
||||
}
|
||||
fn root_of_unity() -> Self {
|
||||
const ROOT: [u8; 32] = [
|
||||
// This was calculated via the formula from the ff crate docs
|
||||
// Self::multiplicative_generator() ** ((modulus - 1) >> Self::S)
|
||||
Scalar::from_repr([
|
||||
212, 7, 190, 235, 223, 117, 135, 190, 254, 131, 206, 66, 83, 86, 240, 14, 122, 194, 193, 171,
|
||||
96, 109, 61, 125, 231, 129, 121, 224, 16, 115, 74, 9,
|
||||
];
|
||||
Scalar::from_repr(ROOT).unwrap()
|
||||
])
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -433,6 +440,11 @@ dalek_group!(
|
|||
RISTRETTO_BASEPOINT_TABLE
|
||||
);
|
||||
|
||||
#[test]
|
||||
fn test_scalar_modulus() {
|
||||
assert_eq!(MODULUS.to_le_bytes(), curve25519_dalek::constants::BASEPOINT_ORDER.to_bytes());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ed25519_group() {
|
||||
ff_group_tests::group::test_prime_group_bits::<EdwardsPoint>();
|
||||
|
|
Loading…
Reference in a new issue