3.2.1, 3.2.4, 3.2.5. Documentation and tests

This commit is contained in:
Luke Parker 2023-02-23 04:05:47 -05:00
parent 686a5ee364
commit 40a6672547
No known key found for this signature in database
2 changed files with 119 additions and 21 deletions

View file

@ -13,30 +13,69 @@ use ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
use crate::{constant_time, math, from_uint}; use crate::{constant_time, math, from_uint};
const MODULUS: U256 = // 2^255 - 19
U256::from_be_hex("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed"); // Uses saturating_sub because checked_sub isn't available at compile time
const MODULUS: U256 = U256::from_u8(1).shl_vartime(255).saturating_sub(&U256::from_u8(19));
const WIDE_MODULUS: U512 = U512::from_be_hex(concat!( const WIDE_MODULUS: U512 = U256::ZERO.concat(&MODULUS);
"0000000000000000000000000000000000000000000000000000000000000000",
"7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed"
));
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)] #[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
pub struct FieldElement(U256); pub struct FieldElement(U256);
pub const MOD_3_8: FieldElement = /*
FieldElement(MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8))); The following is a valid const definition of sqrt(-1) yet exceeds the const_eval_limit by 24x.
Accordingly, it'd only be usable on a nightly compiler with the following crate attributes:
#![feature(const_eval_limit)]
#![const_eval_limit = "24000000"]
pub const MOD_5_8: FieldElement = FieldElement(MOD_3_8.0.saturating_sub(&U256::ONE)); const SQRT_M1: FieldElement = {
// Formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
// 2 ** ((MODULUS - 1) // 4) % MODULUS
let base = U256::from_u8(2);
let exp = MODULUS.saturating_sub(&U256::from_u8(1)).wrapping_div(&U256::from_u8(4));
pub const EDWARDS_D: FieldElement = FieldElement(U256::from_be_hex( const fn mul(x: U256, y: U256) -> U256 {
"52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3", let wide = U256::mul_wide(&x, &y);
)); let wide = U256::concat(&wide.1, &wide.0);
wide.wrapping_rem(&WIDE_MODULUS).split().1
}
pub const SQRT_M1: FieldElement = FieldElement(U256::from_be_hex( // Perform the pow via multiply and square
let mut res = U256::ONE;
// Iterate from highest bit to lowest bit
let mut bit = 255;
loop {
if bit != 255 {
res = mul(res, res);
}
// Reverse from little endian to big endian
if exp.bit_vartime(bit) == 1 {
res = mul(res, base);
}
if bit == 0 {
break;
}
bit -= 1;
}
FieldElement(res)
};
*/
// Use a constant since we can't calculate it at compile-time without a nightly compiler
// Even without const_eval_limit, it'd take ~30s to calculate, which isn't worth it
const SQRT_M1: FieldElement = FieldElement(U256::from_be_hex(
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0", "2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
)); ));
// Constant useful in calculating square roots (RFC-8032 sqrt8k5's exponent used to calculate y)
const MOD_3_8: FieldElement =
FieldElement(MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)));
// Constant useful in sqrt_ratio_i (sqrt(u / v))
const MOD_5_8: FieldElement = FieldElement(MOD_3_8.0.saturating_sub(&U256::ONE));
fn reduce(x: U512) -> U256 { fn reduce(x: U512) -> U256 {
U256::from_le_slice(&x.reduce(&WIDE_MODULUS).unwrap().to_le_bytes()[.. 32]) U256::from_le_slice(&x.reduce(&WIDE_MODULUS).unwrap().to_le_bytes()[.. 32])
} }
@ -93,6 +132,7 @@ impl Field for FieldElement {
CtOption::new(self.pow(NEG_2), !self.is_zero()) CtOption::new(self.pow(NEG_2), !self.is_zero())
} }
// RFC-8032 sqrt8k5
fn sqrt(&self) -> CtOption<Self> { fn sqrt(&self) -> CtOption<Self> {
let tv1 = self.pow(MOD_3_8); let tv1 = self.pow(MOD_3_8);
let tv2 = tv1 * SQRT_M1; let tv2 = tv1 * SQRT_M1;
@ -113,14 +153,20 @@ impl PrimeField for FieldElement {
self.0.to_le_bytes() self.0.to_le_bytes()
} }
// This was set per the specification in the ff crate docs
// The number of leading zero bits in the little-endian bit representation of (modulus - 1)
const S: u32 = 2; const S: u32 = 2;
fn is_odd(&self) -> Choice { fn is_odd(&self) -> Choice {
self.0.is_odd() self.0.is_odd()
} }
fn multiplicative_generator() -> Self { fn multiplicative_generator() -> Self {
// This was calculated with the method from the ff crate docs
// SageMath GF(modulus).primitive_element()
2u64.into() 2u64.into()
} }
fn root_of_unity() -> Self { fn root_of_unity() -> Self {
// This was calculated via the formula from the ff crate docs
// Self::multiplicative_generator() ** ((modulus - 1) >> Self::S)
FieldElement(U256::from_be_hex( FieldElement(U256::from_be_hex(
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0", "2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
)) ))
@ -172,27 +218,67 @@ impl FieldElement {
res res
} }
/// The square root of u/v, as used for Ed25519 point decoding (RFC 8032 5.1.3) and within
/// Ristretto (5.1 Extracting an Inverse Square Root).
///
/// The result is only a valid square root if the Choice is true.
/// RFC 8032 simply fails if there isn't a square root, leaving any return value undefined.
/// Ristretto explicitly returns 0 or sqrt((SQRT_M1 * u) / v).
pub fn sqrt_ratio_i(u: FieldElement, v: FieldElement) -> (Choice, FieldElement) { pub fn sqrt_ratio_i(u: FieldElement, v: FieldElement) -> (Choice, FieldElement) {
let i = SQRT_M1; let i = SQRT_M1;
let v3 = v.square() * v; let v3 = v.square() * v;
let v7 = v3.square() * v; let v7 = v3.square() * v;
// Candidate root
let mut r = (u * v3) * (u * v7).pow(MOD_5_8); let mut r = (u * v3) * (u * v7).pow(MOD_5_8);
// 8032 3.1
let check = v * r.square(); let check = v * r.square();
let correct_sign = check.ct_eq(&u); let correct_sign = check.ct_eq(&u);
let flipped_sign = check.ct_eq(&(-u)); // 8032 3.2 conditional
let flipped_sign_i = check.ct_eq(&((-u) * i)); let neg_u = -u;
let flipped_sign = check.ct_eq(&neg_u);
// Ristretto Step 5
let flipped_sign_i = check.ct_eq(&(neg_u * i));
// 3.2 set
r.conditional_assign(&(r * i), flipped_sign | flipped_sign_i); r.conditional_assign(&(r * i), flipped_sign | flipped_sign_i);
let r_is_negative = r.is_odd(); // Always return the even root, per Ristretto
r.conditional_negate(r_is_negative); // This doesn't break Ed25519 point decoding as that doesn't expect these steps to return a
// specific root
// Ed25519 points include a dedicated sign bit to determine which root to use, so at worst
// this is a pointless inefficiency
r.conditional_negate(r.is_odd());
(correct_sign | flipped_sign, r) (correct_sign | flipped_sign, r)
} }
} }
#[test]
fn test_wide_modulus() {
let mut wide = [0; 64];
wide[.. 32].copy_from_slice(&MODULUS.to_le_bytes());
assert_eq!(wide, WIDE_MODULUS.to_le_bytes());
}
#[test]
fn test_sqrt_m1() {
// Test equivalence against the known constant value
const SQRT_M1_MAGIC: U256 =
U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0");
assert_eq!(SQRT_M1.0, SQRT_M1_MAGIC);
// Also test equivalence against the result of the formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
// 2 ** ((MODULUS - 1) // 4) % MODULUS
assert_eq!(
SQRT_M1,
FieldElement::from(2u8).pow(FieldElement(
(FieldElement::zero() - FieldElement::one()).0.wrapping_div(&U256::from(4u8))
))
);
}
#[test] #[test]
fn test_field() { fn test_field() {
ff_group_tests::prime_field::test_prime_field_bits::<FieldElement>(); ff_group_tests::prime_field::test_prime_field_bits::<FieldElement>();

View file

@ -177,6 +177,7 @@ constant_time!(Scalar, DScalar);
math_neg!(Scalar, Scalar, DScalar::add, DScalar::sub, DScalar::mul); math_neg!(Scalar, Scalar, DScalar::add, DScalar::sub, DScalar::mul);
from_uint!(Scalar, DScalar); from_uint!(Scalar, DScalar);
// Ed25519 order/scalar modulus
const MODULUS: U256 = const MODULUS: U256 =
U256::from_be_hex("1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed"); U256::from_be_hex("1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed");
@ -272,19 +273,25 @@ impl PrimeField for Scalar {
self.0.to_bytes() self.0.to_bytes()
} }
// This was set per the specification in the ff crate docs
// The number of leading zero bits in the little-endian bit representation of (modulus - 1)
const S: u32 = 2; const S: u32 = 2;
fn is_odd(&self) -> Choice { fn is_odd(&self) -> Choice {
choice(self.to_le_bits()[0]) choice(self.to_le_bits()[0])
} }
fn multiplicative_generator() -> Self { fn multiplicative_generator() -> Self {
// This was calculated with the method from the ff crate docs
// SageMath GF(modulus).primitive_element()
2u64.into() 2u64.into()
} }
fn root_of_unity() -> Self { fn root_of_unity() -> Self {
const ROOT: [u8; 32] = [ // This was calculated via the formula from the ff crate docs
// Self::multiplicative_generator() ** ((modulus - 1) >> Self::S)
Scalar::from_repr([
212, 7, 190, 235, 223, 117, 135, 190, 254, 131, 206, 66, 83, 86, 240, 14, 122, 194, 193, 171, 212, 7, 190, 235, 223, 117, 135, 190, 254, 131, 206, 66, 83, 86, 240, 14, 122, 194, 193, 171,
96, 109, 61, 125, 231, 129, 121, 224, 16, 115, 74, 9, 96, 109, 61, 125, 231, 129, 121, 224, 16, 115, 74, 9,
]; ])
Scalar::from_repr(ROOT).unwrap() .unwrap()
} }
} }
@ -433,6 +440,11 @@ dalek_group!(
RISTRETTO_BASEPOINT_TABLE RISTRETTO_BASEPOINT_TABLE
); );
#[test]
fn test_scalar_modulus() {
assert_eq!(MODULUS.to_le_bytes(), curve25519_dalek::constants::BASEPOINT_ORDER.to_bytes());
}
#[test] #[test]
fn test_ed25519_group() { fn test_ed25519_group() {
ff_group_tests::group::test_prime_group_bits::<EdwardsPoint>(); ff_group_tests::group::test_prime_group_bits::<EdwardsPoint>();