mirror of
https://github.com/serai-dex/serai.git
synced 2025-04-16 11:11:56 +00:00
Add a dedicated Allocations
struct for managing validator set allocations
Part of the DB abstraction necessary for this spaghetti.
This commit is contained in:
parent
dab1bab736
commit
3fc00830de
6 changed files with 391 additions and 52 deletions
16
Cargo.lock
generated
16
Cargo.lock
generated
|
@ -9169,31 +9169,17 @@ name = "serai-validator-sets-pallet"
|
|||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"bitvec",
|
||||
"ciphersuite",
|
||||
"borsh",
|
||||
"frame-support",
|
||||
"frame-system",
|
||||
"frost-schnorrkel",
|
||||
"modular-frost",
|
||||
"pallet-babe",
|
||||
"pallet-grandpa",
|
||||
"pallet-timestamp",
|
||||
"parity-scale-codec",
|
||||
"rand_core",
|
||||
"scale-info",
|
||||
"serai-coins-pallet",
|
||||
"serai-dex-pallet",
|
||||
"serai-primitives",
|
||||
"serde",
|
||||
"sp-api",
|
||||
"sp-application-crypto",
|
||||
"sp-consensus-babe",
|
||||
"sp-core",
|
||||
"sp-io",
|
||||
"sp-runtime",
|
||||
"sp-session",
|
||||
"sp-staking",
|
||||
"sp-std",
|
||||
"zeroize",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
|
|
@ -10,6 +10,14 @@ use serai_primitives::{
|
|||
validator_sets::*,
|
||||
};
|
||||
|
||||
/// Key(s) on embedded elliptic curve(s).
|
||||
///
|
||||
/// This may be a single key if the external network uses the same embedded elliptic curve as
|
||||
/// used for the key to oraclize onto Serai. Else, it'll be a key on the embedded elliptic curve
|
||||
/// used for the key to oraclize onto Serai concatenated with the key on the embedded elliptic
|
||||
/// curve used for the external network.
|
||||
pub type EmbeddedEllipticCurveKeys = BoundedVec<u8, ConstU32<{ 2 * ExternalKey::MAX_LEN }>>;
|
||||
|
||||
/// A call to the validator sets.
|
||||
#[derive(Clone, PartialEq, Eq, Debug, BorshSerialize, BorshDeserialize)]
|
||||
pub enum Call {
|
||||
|
@ -43,14 +51,11 @@ pub enum Call {
|
|||
/// The network the origin is setting their embedded elliptic curve keys for.
|
||||
network: ExternalNetworkId,
|
||||
/// The keys on the embedded elliptic curves.
|
||||
///
|
||||
/// This may be a single key if the external network uses the same embedded elliptic curve as
|
||||
/// used for the key to oraclize onto Serai.
|
||||
#[borsh(
|
||||
serialize_with = "serai_primitives::sp_borsh::borsh_serialize_bounded_vec",
|
||||
deserialize_with = "serai_primitives::sp_borsh::borsh_deserialize_bounded_vec"
|
||||
)]
|
||||
keys: BoundedVec<u8, ConstU32<{ 2 * ExternalKey::MAX_LEN }>>,
|
||||
keys: EmbeddedEllipticCurveKeys,
|
||||
},
|
||||
/// Allocate stake to a network.
|
||||
allocate {
|
||||
|
|
|
@ -18,6 +18,10 @@ pub enum EmbeddedEllipticCurve {
|
|||
/// This type serializes to a subset of `NetworkId`.
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Zeroize, BorshSerialize, BorshDeserialize)]
|
||||
#[borsh(use_discriminant = true)]
|
||||
#[cfg_attr(
|
||||
feature = "non_canonical_scale_derivations",
|
||||
derive(scale::Encode, scale::Decode, scale::MaxEncodedLen)
|
||||
)]
|
||||
#[non_exhaustive]
|
||||
pub enum ExternalNetworkId {
|
||||
/// The Bitcoin network.
|
||||
|
@ -63,6 +67,10 @@ impl ExternalNetworkId {
|
|||
|
||||
/// The type used to identify networks.
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Zeroize)]
|
||||
#[cfg_attr(
|
||||
feature = "non_canonical_scale_derivations",
|
||||
derive(scale::Encode, scale::Decode, scale::MaxEncodedLen)
|
||||
)]
|
||||
pub enum NetworkId {
|
||||
/// The Serai network.
|
||||
Serai,
|
||||
|
|
|
@ -6,6 +6,7 @@ use borsh::{BorshSerialize, BorshDeserialize};
|
|||
use ciphersuite::{group::GroupEncoding, Ciphersuite, Ristretto};
|
||||
|
||||
use crate::{
|
||||
constants::MAX_KEY_SHARES_PER_SET,
|
||||
crypto::{Public, KeyPair},
|
||||
network_id::{ExternalNetworkId, NetworkId},
|
||||
};
|
||||
|
@ -74,3 +75,36 @@ impl ExternalValidatorSet {
|
|||
borsh::to_vec(&(b"ValidatorSets-set_keys", self, key_pair)).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
/// For a set of validators whose key shares may exceed the maximum, reduce until they are less
|
||||
/// than or equal to the maximum.
|
||||
///
|
||||
/// This runs in time linear to the exceed key shares and assumes the excess fits within a usize,
|
||||
/// panicking otherwise.
|
||||
///
|
||||
/// Reduction occurs by reducing each validator in a reverse round-robin. This means the worst
|
||||
/// validators lose their key shares first.
|
||||
pub fn amortize_excess_key_shares(validators: &mut [(Public, u64)]) {
|
||||
let total_key_shares = validators.iter().map(|(_, shares)| shares).sum::<u64>();
|
||||
for i in 0 .. usize::try_from(total_key_shares.saturating_sub(u64::from(MAX_KEY_SHARES_PER_SET)))
|
||||
.unwrap()
|
||||
{
|
||||
validators[validators.len() - ((i % validators.len()) + 1)].1 -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the post-amortization key shares for the top validator.
|
||||
///
|
||||
/// May panic when `validators == 0` or
|
||||
/// `(top_validator_key_shares * validators) < total_key_shares`.
|
||||
pub fn post_amortization_key_shares_for_top_validator(
|
||||
validators: usize,
|
||||
top_validator_key_shares: u64,
|
||||
total_key_shares: u64,
|
||||
) -> u64 {
|
||||
let excess = total_key_shares.saturating_sub(MAX_KEY_SHARES_PER_SET.into());
|
||||
// Since the top validator is amortized last, the question is how many complete iterations of
|
||||
// the round robin occur
|
||||
let round_robin_iterations = excess / u64::try_from(validators).unwrap();
|
||||
top_validator_key_shares - round_robin_iterations
|
||||
}
|
||||
|
|
|
@ -21,39 +21,20 @@ bitvec = { version = "1", default-features = false, features = ["alloc", "serde"
|
|||
scale = { package = "parity-scale-codec", version = "3", default-features = false, features = ["derive", "bit-vec"] }
|
||||
scale-info = { version = "2", default-features = false, features = ["derive", "bit-vec"] }
|
||||
|
||||
serde = { version = "1", default-features = false, features = ["derive", "alloc"] }
|
||||
|
||||
sp-core = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
sp-io = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
sp-std = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
sp-api = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
sp-application-crypto = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
sp-runtime = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
sp-session = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
sp-staking = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
|
||||
frame-system = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
frame-support = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
|
||||
pallet-babe = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
pallet-grandpa = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
|
||||
serai-primitives = { path = "../primitives", default-features = false }
|
||||
serai-primitives = { path = "../primitives", default-features = false, features = ["non_canonical_scale_derivations"] }
|
||||
|
||||
coins-pallet = { package = "serai-coins-pallet", path = "../coins", default-features = false }
|
||||
dex-pallet = { package = "serai-dex-pallet", path = "../dex", default-features = false }
|
||||
|
||||
[dev-dependencies]
|
||||
pallet-timestamp = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
|
||||
sp-consensus-babe = { git = "https://github.com/serai-dex/polkadot-sdk", branch = "serai-next", default-features = false }
|
||||
|
||||
ciphersuite = { path = "../../crypto/ciphersuite", features = ["ristretto"] }
|
||||
frost = { package = "modular-frost", path = "../../crypto/frost", features = ["tests"] }
|
||||
schnorrkel = { path = "../../crypto/schnorrkel", package = "frost-schnorrkel" }
|
||||
|
||||
zeroize = "^1.5"
|
||||
rand_core = "0.6"
|
||||
borsh = { version = "1", default-features = false, features = ["derive", "de_strict_order"] }
|
||||
|
||||
[features]
|
||||
std = [
|
||||
|
@ -64,26 +45,14 @@ std = [
|
|||
|
||||
"sp-core/std",
|
||||
"sp-io/std",
|
||||
"sp-std/std",
|
||||
"sp-api/std",
|
||||
"sp-application-crypto/std",
|
||||
"sp-runtime/std",
|
||||
"sp-session/std",
|
||||
"sp-staking/std",
|
||||
|
||||
"sp-consensus-babe/std",
|
||||
|
||||
"frame-system/std",
|
||||
"frame-support/std",
|
||||
|
||||
"pallet-babe/std",
|
||||
"pallet-grandpa/std",
|
||||
"pallet-timestamp/std",
|
||||
|
||||
"serai-primitives/std",
|
||||
|
||||
"coins-pallet/std",
|
||||
"dex-pallet/std",
|
||||
]
|
||||
|
||||
try-runtime = [
|
||||
|
|
337
substrate/validator-sets/src/allocations.rs
Normal file
337
substrate/validator-sets/src/allocations.rs
Normal file
|
@ -0,0 +1,337 @@
|
|||
use core::marker::PhantomData;
|
||||
|
||||
use sp_core::{Encode, sr25519::Public};
|
||||
|
||||
use serai_primitives::{constants::MAX_KEY_SHARES_PER_SET, network_id::NetworkId, balance::Amount};
|
||||
|
||||
use frame_support::storage::{StorageMap, StoragePrefixedMap as Spm};
|
||||
|
||||
/// Reverses the lexicographic order of a given byte array.
|
||||
///
|
||||
/// This is a bijective mapping. Calling reverse twice is equivalent to the identity function.
|
||||
fn reverse_lexicographic_order<const N: usize>(bytes: [u8; N]) -> [u8; N] {
|
||||
let mut res = [0u8; N];
|
||||
for (i, byte) in bytes.iter().enumerate() {
|
||||
res[i] = !*byte;
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
/// The key to use for the allocations map.
|
||||
type AllocationsKey = (NetworkId, Public);
|
||||
/// The key to use for the sorted allocations map.
|
||||
type SortedAllocationsKey = (NetworkId, [u8; 8], [u8; 16], Public);
|
||||
|
||||
/// An interface for managing validators' allocations.
|
||||
///
|
||||
/// `SortedAllocationsMap` MUST be instantiated with a map using `Identity` for its hasher.
|
||||
/*
|
||||
This is premised on the underlying trie iterating from keys with low-bytes to keys with
|
||||
high-bytes.
|
||||
|
||||
We use Identity so we don't have a hasher add pseudorandom bytes to the start of the keys. This
|
||||
does remove the protection using a hash algorithm here offers against spam attacks (by flooding
|
||||
the DB with layers, increasing lookup time and Merkle proof sizes, not that we use Merkle proofs
|
||||
proofs as Polkadot does).
|
||||
|
||||
Since amounts are represented with just 8 bytes, only 16 nibbles are present. This caps the
|
||||
potential depth caused by spam at 16 layers (as the underlying DB operates on nibbles). While
|
||||
there is an entire 32-byte public key after this, a Blake hash of the key is inserted after the
|
||||
amount to prevent the key from also being used to cause layer spam. We use a `[u8; 16]` to
|
||||
represent this, and not a explicit `Blake2_128Concat` hasher, to ensure all prior keys are part
|
||||
part of the hash. A Substrate-hasher would only hash the immediately following key.
|
||||
|
||||
There's also a minimum stake requirement, which further reduces the potential for spam.
|
||||
*/
|
||||
pub(crate) struct Allocations<
|
||||
AllocationsMap: StorageMap<AllocationsKey, Amount, Query = Option<Amount>>,
|
||||
SortedAllocationsMap: StorageMap<SortedAllocationsKey, (), Query = Option<()>> + Spm<()>,
|
||||
>(PhantomData<(AllocationsMap, SortedAllocationsMap)>);
|
||||
impl<
|
||||
AllocationsMap: StorageMap<AllocationsKey, Amount, Query = Option<Amount>>,
|
||||
SortedAllocationsMap: StorageMap<SortedAllocationsKey, (), Query = Option<()>> + Spm<()>,
|
||||
> Allocations<AllocationsMap, SortedAllocationsMap>
|
||||
{
|
||||
/// The storage key to use with the sorted allocations map.
|
||||
#[inline]
|
||||
fn sorted_allocation_storage_key(
|
||||
network: NetworkId,
|
||||
key: Public,
|
||||
amount: Amount,
|
||||
) -> (NetworkId, [u8; 8], [u8; 16], Public) {
|
||||
// We want the accounts with the highest allocations to be first. Since the DB iterates from
|
||||
// low to high, we take the BE bytes of the amount (meaning the lowest-value allocations have
|
||||
// the lowest lexicographic order and will be first), then reverse their order.
|
||||
let amount = reverse_lexicographic_order(amount.0.to_be_bytes());
|
||||
// Hash all of the keys to best defend against layer-spam attacks
|
||||
let hash = sp_io::hashing::blake2_128(&(network, amount, key).encode());
|
||||
(network, amount, hash, key)
|
||||
}
|
||||
|
||||
// Recover the user's public key from a storage key.
|
||||
fn recover_key_from_sorted_allocation_storage_key(key: &[u8]) -> Public {
|
||||
<Public as From<[u8; 32]>>::from(key[(key.len() - 32) ..].try_into().unwrap())
|
||||
}
|
||||
|
||||
// Recover the amount allocated from a storage key.
|
||||
fn recover_amount_from_sorted_allocation_storage_key(key: &[u8]) -> Amount {
|
||||
// We read the amount from the end of the key as everything after the amount is fixed-length
|
||||
let distance_from_end = 8 + 16 + 32;
|
||||
let start_pos = key.len() - distance_from_end;
|
||||
let raw: [u8; 8] = key[start_pos .. (start_pos + 8)].try_into().unwrap();
|
||||
// Take advantage of how this is a bijective mapping
|
||||
let raw = reverse_lexicographic_order(raw);
|
||||
Amount(u64::from_be_bytes(raw))
|
||||
}
|
||||
|
||||
/// Set an allocation.
|
||||
///
|
||||
/// Returns the validator's prior allocation.
|
||||
pub(crate) fn set(network: NetworkId, key: Public, amount: Amount) -> Option<Amount> {
|
||||
let prior = AllocationsMap::take((network, key));
|
||||
if let Some(amount) = prior {
|
||||
SortedAllocationsMap::remove(Self::sorted_allocation_storage_key(network, key, amount));
|
||||
}
|
||||
if amount.0 != 0 {
|
||||
AllocationsMap::set((network, key), Some(amount));
|
||||
SortedAllocationsMap::set(
|
||||
Self::sorted_allocation_storage_key(network, key, amount),
|
||||
Some(()),
|
||||
);
|
||||
}
|
||||
prior
|
||||
}
|
||||
|
||||
/// Get an allocation.
|
||||
pub(crate) fn get(network: NetworkId, key: Public) -> Option<Amount> {
|
||||
AllocationsMap::get((network, key))
|
||||
}
|
||||
|
||||
/// Iterate over allocations for a network, yielding the highest-valued allocations.
|
||||
///
|
||||
/// This will yield all validators present whose allocation is greater than or equal to the
|
||||
/// specified minimum.
|
||||
///
|
||||
/// If two validators share an allocation, the order is deterministic yet otherwise undefined.
|
||||
pub(crate) fn iter(
|
||||
network: NetworkId,
|
||||
minimum_allocation: Amount,
|
||||
) -> impl Iterator<Item = (Public, Amount)> {
|
||||
let mut prefix = SortedAllocationsMap::final_prefix().to_vec();
|
||||
prefix.extend(&network.encode());
|
||||
frame_support::storage::PrefixIterator::<_, ()>::new(prefix.clone(), prefix, |key, _value| {
|
||||
Ok((
|
||||
Self::recover_key_from_sorted_allocation_storage_key(key),
|
||||
Self::recover_amount_from_sorted_allocation_storage_key(key),
|
||||
))
|
||||
})
|
||||
.filter(move |(_key, allocation)| *allocation >= minimum_allocation)
|
||||
}
|
||||
|
||||
/// Check if a fresh sample will be BFT for f > 0.
|
||||
pub(crate) fn will_be_bft_for_any_nonzero_f(
|
||||
network: NetworkId,
|
||||
allocation_per_key_share: Amount,
|
||||
) -> bool {
|
||||
let mut validators_len = 0;
|
||||
let mut top_validator_key_shares = None;
|
||||
let mut total_key_shares = 0;
|
||||
for (_, amount) in Self::iter(network, allocation_per_key_share) {
|
||||
validators_len += 1;
|
||||
|
||||
let key_shares = amount.0 / allocation_per_key_share.0;
|
||||
total_key_shares += key_shares;
|
||||
// If this is the first validator, they're the top validator, due to this being sorted
|
||||
if top_validator_key_shares.is_none() {
|
||||
top_validator_key_shares = Some(key_shares);
|
||||
}
|
||||
|
||||
if total_key_shares > u64::from(MAX_KEY_SHARES_PER_SET) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let Some(top_validator_key_shares) = top_validator_key_shares else {
|
||||
// This network has n = 0 so f = 0
|
||||
return false;
|
||||
};
|
||||
|
||||
// `total_key_shares` may exceed `MAX_KEY_SHARES_PER_SET`, which will cause a round robin
|
||||
// reduction of each validator's key shares until their sum is `MAX_KEY_SHARES_PER_SET`.
|
||||
// `post_amortization_key_shares_for_top_validator` yields what the top validator's key shares
|
||||
// would be after such a reduction, letting us evaluate this correctly
|
||||
let top_validator_key_shares =
|
||||
serai_primitives::validator_sets::post_amortization_key_shares_for_top_validator(
|
||||
validators_len,
|
||||
top_validator_key_shares,
|
||||
total_key_shares,
|
||||
);
|
||||
let total_key_shares = total_key_shares.min(MAX_KEY_SHARES_PER_SET.into());
|
||||
// We achieve BFT under n=3f+1. Accordingly, for the top validator's key shares to be `f`, and
|
||||
// still have `3f < n`, we tolerate the top validator being faulty
|
||||
(top_validator_key_shares * 3) < total_key_shares
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_reverse_lexicographic_order() {
|
||||
use rand_core::{RngCore, OsRng};
|
||||
|
||||
use sp_io::TestExternalities;
|
||||
use frame_support::{pallet_prelude::*, Identity, traits::StorageInstance};
|
||||
|
||||
TestExternalities::default().execute_with(|| {
|
||||
struct Storage;
|
||||
impl StorageInstance for Storage {
|
||||
fn pallet_prefix() -> &'static str {
|
||||
"LexicographicOrder"
|
||||
}
|
||||
|
||||
const STORAGE_PREFIX: &'static str = "storage";
|
||||
}
|
||||
type Map = StorageMap<Storage, Identity, [u8; 8], (), OptionQuery>;
|
||||
|
||||
struct StorageReverse;
|
||||
impl StorageInstance for StorageReverse {
|
||||
fn pallet_prefix() -> &'static str {
|
||||
"LexicographicOrder"
|
||||
}
|
||||
|
||||
const STORAGE_PREFIX: &'static str = "storagereverse";
|
||||
}
|
||||
type MapReverse = StorageMap<StorageReverse, Identity, [u8; 8], (), OptionQuery>;
|
||||
|
||||
// populate the maps
|
||||
let mut amounts = vec![];
|
||||
for _ in 0 .. 100 {
|
||||
amounts.push(OsRng.next_u64());
|
||||
}
|
||||
|
||||
let mut amounts_sorted = amounts.clone();
|
||||
amounts_sorted.sort();
|
||||
for a in amounts {
|
||||
Map::set(a.to_be_bytes(), Some(()));
|
||||
MapReverse::set(reverse_lexicographic_order(a.to_be_bytes()), Some(()));
|
||||
}
|
||||
|
||||
// retrive back and check whether they are sorted as expected
|
||||
let total_size = amounts_sorted.len();
|
||||
let mut map_iter = Map::iter_keys();
|
||||
let mut reverse_map_iter = MapReverse::iter_keys();
|
||||
for i in 0 .. amounts_sorted.len() {
|
||||
let first = map_iter.next().unwrap();
|
||||
let second = reverse_map_iter.next().unwrap();
|
||||
|
||||
// The next value in the in-order map should be the next value in the sorted amounts
|
||||
assert_eq!(u64::from_be_bytes(first), amounts_sorted[i]);
|
||||
// And then if we again apply the bijective mapping, the next value in the reversed map
|
||||
// should be the next value from the end in the sorted amounts
|
||||
assert_eq!(
|
||||
u64::from_be_bytes(reverse_lexicographic_order(second)),
|
||||
amounts_sorted[total_size - (i + 1)]
|
||||
);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_allocations() {
|
||||
use rand_core::{RngCore, OsRng};
|
||||
|
||||
use borsh::BorshDeserialize;
|
||||
|
||||
use sp_io::TestExternalities;
|
||||
use frame_support::{pallet_prelude::*, Identity, traits::StorageInstance};
|
||||
|
||||
TestExternalities::default().execute_with(|| {
|
||||
struct Storage;
|
||||
impl StorageInstance for Storage {
|
||||
fn pallet_prefix() -> &'static str {
|
||||
"Allocations"
|
||||
}
|
||||
|
||||
const STORAGE_PREFIX: &'static str = "AllocationsMap";
|
||||
}
|
||||
type AllocationsMap =
|
||||
StorageMap<Storage, Blake2_128Concat, AllocationsKey, Amount, OptionQuery>;
|
||||
|
||||
struct StorageSorted;
|
||||
impl StorageInstance for StorageSorted {
|
||||
fn pallet_prefix() -> &'static str {
|
||||
"Allocations"
|
||||
}
|
||||
|
||||
const STORAGE_PREFIX: &'static str = "SortedAllocationsMap";
|
||||
}
|
||||
type SortedAllocationsMap =
|
||||
StorageMap<StorageSorted, Identity, SortedAllocationsKey, (), OptionQuery>;
|
||||
|
||||
let before = NetworkId::deserialize_reader(&mut [0].as_slice()).unwrap();
|
||||
let network = NetworkId::deserialize_reader(&mut [1].as_slice()).unwrap();
|
||||
let after = NetworkId::deserialize_reader(&mut [2].as_slice()).unwrap();
|
||||
|
||||
// Create allocations
|
||||
let rand_allocation = || {
|
||||
let mut key = [0; 32];
|
||||
OsRng.fill_bytes(&mut key);
|
||||
let key = Public::from(key);
|
||||
let amount = Amount(OsRng.next_u64());
|
||||
(key, amount)
|
||||
};
|
||||
const ALLOCATIONS: usize = 100;
|
||||
let mut allocations = vec![];
|
||||
for _ in 0 .. ALLOCATIONS {
|
||||
let (key, amount) = rand_allocation();
|
||||
allocations.push((key, amount));
|
||||
assert_eq!(
|
||||
Allocations::<AllocationsMap, SortedAllocationsMap>::set(network, key, amount),
|
||||
None
|
||||
);
|
||||
}
|
||||
// Sort them from highest amount to lowest
|
||||
allocations.sort_by_key(|item| item.1);
|
||||
allocations.reverse();
|
||||
|
||||
// Set allocations for the previous and next network, by byte, to ensure the map isn't solely
|
||||
// these allocations. This ensures we don't read from another network accidentally
|
||||
{
|
||||
let (key, amount) = rand_allocation();
|
||||
assert_eq!(
|
||||
Allocations::<AllocationsMap, SortedAllocationsMap>::set(before, key, amount),
|
||||
None
|
||||
);
|
||||
assert_eq!(
|
||||
Allocations::<AllocationsMap, SortedAllocationsMap>::set(after, key, amount),
|
||||
None
|
||||
);
|
||||
}
|
||||
|
||||
// Check the iterator works
|
||||
{
|
||||
let mut a = Allocations::<AllocationsMap, SortedAllocationsMap>::iter(network, Amount(0));
|
||||
let mut b = allocations.clone().into_iter();
|
||||
for _ in 0 .. ALLOCATIONS {
|
||||
assert_eq!(a.next(), b.next());
|
||||
}
|
||||
assert!(a.next().is_none());
|
||||
assert!(b.next().is_none());
|
||||
}
|
||||
|
||||
// Check the minimum works
|
||||
{
|
||||
assert_eq!(
|
||||
Allocations::<AllocationsMap, SortedAllocationsMap>::iter(network, allocations[0].1).next(),
|
||||
Some(allocations[0])
|
||||
);
|
||||
assert_eq!(
|
||||
Allocations::<AllocationsMap, SortedAllocationsMap>::iter(
|
||||
network,
|
||||
// Fails with probability ~1/2**57
|
||||
(allocations[0].1 + Amount(1)).unwrap()
|
||||
)
|
||||
.next(),
|
||||
None,
|
||||
);
|
||||
}
|
||||
});
|
||||
}
|
Loading…
Reference in a new issue