Stub binaries' code when features binaries is not set

Allows running `cargo build` in monero-serai and message-queue without
erroring, since it'd automatically try to build the binaries which require
additional features.

While we could make those features not optional, it'd increase time to build
and disk space required, which is why the features exist for monero-serai and
message-queue in the first place (since both are frequently used as libs).
This commit is contained in:
Luke Parker 2023-08-02 14:43:49 -04:00
parent 38ad1d4bc4
commit 376b36974f
No known key found for this signature in database
3 changed files with 323 additions and 297 deletions

1
Cargo.lock generated
View file

@ -2439,6 +2439,7 @@ name = "ff-group-tests"
version = "0.13.0"
dependencies = [
"bls12_381",
"ff",
"group",
"k256",
"p256",

View file

@ -1,245 +1,251 @@
use std::sync::Arc;
#[cfg(feature = "binaries")]
mod binaries {
pub(crate) use std::sync::Arc;
use curve25519_dalek::{
scalar::Scalar,
edwards::{CompressedEdwardsY, EdwardsPoint},
};
use multiexp::BatchVerifier;
use serde::Deserialize;
use serde_json::json;
use monero_serai::{
Commitment,
ringct::RctPrunable,
transaction::{Input, Transaction},
block::Block,
rpc::{RpcError, Rpc, HttpRpc},
};
use tokio::task::JoinHandle;
async fn check_block(rpc: Arc<Rpc<HttpRpc>>, block_i: usize) {
let hash = loop {
match rpc.get_block_hash(block_i).await {
Ok(hash) => break hash,
Err(RpcError::ConnectionError) => {
println!("get_block_hash ConnectionError");
continue;
}
Err(e) => panic!("couldn't get block {block_i}'s hash: {e:?}"),
}
pub(crate) use curve25519_dalek::{
scalar::Scalar,
edwards::{CompressedEdwardsY, EdwardsPoint},
};
// TODO: Grab the JSON to also check it was deserialized correctly
#[derive(Deserialize, Debug)]
struct BlockResponse {
blob: String,
}
let res: BlockResponse = loop {
match rpc.json_rpc_call("get_block", Some(json!({ "hash": hex::encode(hash) }))).await {
Ok(res) => break res,
Err(RpcError::ConnectionError) => {
println!("get_block ConnectionError");
continue;
}
Err(e) => panic!("couldn't get block {block_i} via block.hash(): {e:?}"),
}
pub(crate) use multiexp::BatchVerifier;
pub(crate) use serde::Deserialize;
pub(crate) use serde_json::json;
pub(crate) use monero_serai::{
Commitment,
ringct::RctPrunable,
transaction::{Input, Transaction},
block::Block,
rpc::{RpcError, Rpc, HttpRpc},
};
let blob = hex::decode(res.blob).expect("node returned non-hex block");
let block = Block::read(&mut blob.as_slice())
.unwrap_or_else(|_| panic!("couldn't deserialize block {block_i}"));
assert_eq!(block.hash(), hash, "hash differs");
assert_eq!(block.serialize(), blob, "serialization differs");
pub(crate) use tokio::task::JoinHandle;
let txs_len = 1 + block.txs.len();
if !block.txs.is_empty() {
#[derive(Deserialize, Debug)]
struct TransactionResponse {
tx_hash: String,
as_hex: String,
}
#[derive(Deserialize, Debug)]
struct TransactionsResponse {
#[serde(default)]
missed_tx: Vec<String>,
txs: Vec<TransactionResponse>,
}
let mut hashes_hex = block.txs.iter().map(hex::encode).collect::<Vec<_>>();
let mut all_txs = vec![];
while !hashes_hex.is_empty() {
let txs: TransactionsResponse = loop {
match rpc
.rpc_call(
"get_transactions",
Some(json!({
"txs_hashes": hashes_hex.drain(.. hashes_hex.len().min(100)).collect::<Vec<_>>(),
})),
)
.await
{
Ok(txs) => break txs,
Err(RpcError::ConnectionError) => {
println!("get_transactions ConnectionError");
continue;
}
Err(e) => panic!("couldn't call get_transactions: {e:?}"),
pub(crate) async fn check_block(rpc: Arc<Rpc<HttpRpc>>, block_i: usize) {
let hash = loop {
match rpc.get_block_hash(block_i).await {
Ok(hash) => break hash,
Err(RpcError::ConnectionError) => {
println!("get_block_hash ConnectionError");
continue;
}
};
assert!(txs.missed_tx.is_empty());
all_txs.extend(txs.txs);
Err(e) => panic!("couldn't get block {block_i}'s hash: {e:?}"),
}
};
// TODO: Grab the JSON to also check it was deserialized correctly
#[derive(Deserialize, Debug)]
struct BlockResponse {
blob: String,
}
let res: BlockResponse = loop {
match rpc.json_rpc_call("get_block", Some(json!({ "hash": hex::encode(hash) }))).await {
Ok(res) => break res,
Err(RpcError::ConnectionError) => {
println!("get_block ConnectionError");
continue;
}
Err(e) => panic!("couldn't get block {block_i} via block.hash(): {e:?}"),
}
};
let mut batch = BatchVerifier::new(block.txs.len());
for (tx_hash, tx_res) in block.txs.into_iter().zip(all_txs) {
assert_eq!(
tx_res.tx_hash,
hex::encode(tx_hash),
"node returned a transaction with different hash"
);
let blob = hex::decode(res.blob).expect("node returned non-hex block");
let block = Block::read(&mut blob.as_slice())
.unwrap_or_else(|_| panic!("couldn't deserialize block {block_i}"));
assert_eq!(block.hash(), hash, "hash differs");
assert_eq!(block.serialize(), blob, "serialization differs");
let tx = Transaction::read(
&mut hex::decode(&tx_res.as_hex).expect("node returned non-hex transaction").as_slice(),
)
.expect("couldn't deserialize transaction");
let txs_len = 1 + block.txs.len();
assert_eq!(
hex::encode(tx.serialize()),
tx_res.as_hex,
"Transaction serialization was different"
);
assert_eq!(tx.hash(), tx_hash, "Transaction hash was different");
if matches!(tx.rct_signatures.prunable, RctPrunable::Null) {
assert_eq!(tx.prefix.version, 1);
assert!(!tx.signatures.is_empty());
continue;
if !block.txs.is_empty() {
#[derive(Deserialize, Debug)]
struct TransactionResponse {
tx_hash: String,
as_hex: String,
}
#[derive(Deserialize, Debug)]
struct TransactionsResponse {
#[serde(default)]
missed_tx: Vec<String>,
txs: Vec<TransactionResponse>,
}
let sig_hash = tx.signature_hash();
// Verify all proofs we support proving for
// This is due to having debug_asserts calling verify within their proving, and CLSAG
// multisig explicitly calling verify as part of its signing process
// Accordingly, making sure our signature_hash algorithm is correct is great, and further
// making sure the verification functions are valid is appreciated
match tx.rct_signatures.prunable {
RctPrunable::Null | RctPrunable::MlsagBorromean { .. } => {}
RctPrunable::MlsagBulletproofs { bulletproofs, .. } => {
assert!(bulletproofs.batch_verify(
&mut rand_core::OsRng,
&mut batch,
(),
&tx.rct_signatures.base.commitments
));
}
RctPrunable::Clsag { bulletproofs, clsags, pseudo_outs } => {
assert!(bulletproofs.batch_verify(
&mut rand_core::OsRng,
&mut batch,
(),
&tx.rct_signatures.base.commitments
));
for (i, clsag) in clsags.into_iter().enumerate() {
let (amount, key_offsets, image) = match &tx.prefix.inputs[i] {
Input::Gen(_) => panic!("Input::Gen"),
Input::ToKey { amount, key_offsets, key_image } => (amount, key_offsets, key_image),
};
let mut running_sum = 0;
let mut actual_indexes = vec![];
for offset in key_offsets {
running_sum += offset;
actual_indexes.push(running_sum);
let mut hashes_hex = block.txs.iter().map(hex::encode).collect::<Vec<_>>();
let mut all_txs = vec![];
while !hashes_hex.is_empty() {
let txs: TransactionsResponse = loop {
match rpc
.rpc_call(
"get_transactions",
Some(json!({
"txs_hashes": hashes_hex.drain(.. hashes_hex.len().min(100)).collect::<Vec<_>>(),
})),
)
.await
{
Ok(txs) => break txs,
Err(RpcError::ConnectionError) => {
println!("get_transactions ConnectionError");
continue;
}
Err(e) => panic!("couldn't call get_transactions: {e:?}"),
}
};
assert!(txs.missed_tx.is_empty());
all_txs.extend(txs.txs);
}
async fn get_outs(
rpc: &Rpc<HttpRpc>,
amount: u64,
indexes: &[u64],
) -> Vec<[EdwardsPoint; 2]> {
#[derive(Deserialize, Debug)]
struct Out {
key: String,
mask: String,
let mut batch = BatchVerifier::new(block.txs.len());
for (tx_hash, tx_res) in block.txs.into_iter().zip(all_txs) {
assert_eq!(
tx_res.tx_hash,
hex::encode(tx_hash),
"node returned a transaction with different hash"
);
let tx = Transaction::read(
&mut hex::decode(&tx_res.as_hex).expect("node returned non-hex transaction").as_slice(),
)
.expect("couldn't deserialize transaction");
assert_eq!(
hex::encode(tx.serialize()),
tx_res.as_hex,
"Transaction serialization was different"
);
assert_eq!(tx.hash(), tx_hash, "Transaction hash was different");
if matches!(tx.rct_signatures.prunable, RctPrunable::Null) {
assert_eq!(tx.prefix.version, 1);
assert!(!tx.signatures.is_empty());
continue;
}
let sig_hash = tx.signature_hash();
// Verify all proofs we support proving for
// This is due to having debug_asserts calling verify within their proving, and CLSAG
// multisig explicitly calling verify as part of its signing process
// Accordingly, making sure our signature_hash algorithm is correct is great, and further
// making sure the verification functions are valid is appreciated
match tx.rct_signatures.prunable {
RctPrunable::Null | RctPrunable::MlsagBorromean { .. } => {}
RctPrunable::MlsagBulletproofs { bulletproofs, .. } => {
assert!(bulletproofs.batch_verify(
&mut rand_core::OsRng,
&mut batch,
(),
&tx.rct_signatures.base.commitments
));
}
RctPrunable::Clsag { bulletproofs, clsags, pseudo_outs } => {
assert!(bulletproofs.batch_verify(
&mut rand_core::OsRng,
&mut batch,
(),
&tx.rct_signatures.base.commitments
));
for (i, clsag) in clsags.into_iter().enumerate() {
let (amount, key_offsets, image) = match &tx.prefix.inputs[i] {
Input::Gen(_) => panic!("Input::Gen"),
Input::ToKey { amount, key_offsets, key_image } => (amount, key_offsets, key_image),
};
let mut running_sum = 0;
let mut actual_indexes = vec![];
for offset in key_offsets {
running_sum += offset;
actual_indexes.push(running_sum);
}
#[derive(Deserialize, Debug)]
struct Outs {
outs: Vec<Out>,
}
let outs: Outs = loop {
match rpc
.rpc_call(
"get_outs",
Some(json!({
"get_txid": true,
"outputs": indexes.iter().map(|o| json!({
"amount": amount,
"index": o
})).collect::<Vec<_>>()
})),
)
.await
{
Ok(outs) => break outs,
Err(RpcError::ConnectionError) => {
println!("get_outs ConnectionError");
continue;
}
Err(e) => panic!("couldn't connect to RPC to get outs: {e:?}"),
async fn get_outs(
rpc: &Rpc<HttpRpc>,
amount: u64,
indexes: &[u64],
) -> Vec<[EdwardsPoint; 2]> {
#[derive(Deserialize, Debug)]
struct Out {
key: String,
mask: String,
}
};
let rpc_point = |point: &str| {
CompressedEdwardsY(
hex::decode(point)
.expect("invalid hex for ring member")
.try_into()
.expect("invalid point len for ring member"),
)
.decompress()
.expect("invalid point for ring member")
};
#[derive(Deserialize, Debug)]
struct Outs {
outs: Vec<Out>,
}
outs
.outs
.iter()
.map(|out| {
let mask = rpc_point(&out.mask);
if amount != 0 {
assert_eq!(mask, Commitment::new(Scalar::from(1u8), amount).calculate());
let outs: Outs = loop {
match rpc
.rpc_call(
"get_outs",
Some(json!({
"get_txid": true,
"outputs": indexes.iter().map(|o| json!({
"amount": amount,
"index": o
})).collect::<Vec<_>>()
})),
)
.await
{
Ok(outs) => break outs,
Err(RpcError::ConnectionError) => {
println!("get_outs ConnectionError");
continue;
}
Err(e) => panic!("couldn't connect to RPC to get outs: {e:?}"),
}
[rpc_point(&out.key), mask]
})
.collect()
}
};
clsag
.verify(
&get_outs(&rpc, amount.unwrap_or(0), &actual_indexes).await,
image,
&pseudo_outs[i],
&sig_hash,
)
.unwrap();
let rpc_point = |point: &str| {
CompressedEdwardsY(
hex::decode(point)
.expect("invalid hex for ring member")
.try_into()
.expect("invalid point len for ring member"),
)
.decompress()
.expect("invalid point for ring member")
};
outs
.outs
.iter()
.map(|out| {
let mask = rpc_point(&out.mask);
if amount != 0 {
assert_eq!(mask, Commitment::new(Scalar::from(1u8), amount).calculate());
}
[rpc_point(&out.key), mask]
})
.collect()
}
clsag
.verify(
&get_outs(&rpc, amount.unwrap_or(0), &actual_indexes).await,
image,
&pseudo_outs[i],
&sig_hash,
)
.unwrap();
}
}
}
}
assert!(batch.verify_vartime());
}
assert!(batch.verify_vartime());
}
println!("Deserialized, hashed, and reserialized {block_i} with {} TXs", txs_len);
println!("Deserialized, hashed, and reserialized {block_i} with {} TXs", txs_len);
}
}
#[cfg(feature = "binaries")]
#[tokio::main]
async fn main() {
use binaries::*;
let args = std::env::args().collect::<Vec<String>>();
// Read start block as the first arg
@ -307,3 +313,8 @@ async fn main() {
}
}
}
#[cfg(not(feature = "binaries"))]
fn main() {
panic!("To run binaries, please build with `--feature binaries`.");
}

View file

@ -1,114 +1,123 @@
use std::{
sync::{Arc, RwLock},
collections::HashMap,
};
use ciphersuite::{group::GroupEncoding, Ciphersuite, Ristretto};
use schnorr_signatures::SchnorrSignature;
use serai_primitives::NetworkId;
use jsonrpsee::{RpcModule, server::ServerBuilder};
#[cfg(feature = "binaries")]
mod messages;
use messages::*;
#[cfg(feature = "binaries")]
mod queue;
use queue::Queue;
type Db = serai_db::RocksDB;
#[cfg(feature = "binaries")]
mod binaries {
pub(crate) use std::{
sync::{Arc, RwLock},
collections::HashMap,
};
lazy_static::lazy_static! {
static ref KEYS: Arc<RwLock<HashMap<Service, <Ristretto as Ciphersuite>::G>>> =
Arc::new(RwLock::new(HashMap::new()));
static ref QUEUES: Arc<RwLock<HashMap<Service, RwLock<Queue<Db>>>>> =
Arc::new(RwLock::new(HashMap::new()));
}
pub(crate) use ciphersuite::{group::GroupEncoding, Ciphersuite, Ristretto};
pub(crate) use schnorr_signatures::SchnorrSignature;
// queue RPC method
/*
Queues a message to be delivered from a processor to a coordinator, or vice versa.
pub(crate) use serai_primitives::NetworkId;
Messages are authenticated to be coming from the claimed service. Recipient services SHOULD
independently verify signatures.
pub(crate) use jsonrpsee::{RpcModule, server::ServerBuilder};
The metadata specifies an intent. Only one message, for a specified intent, will be delivered.
This allows services to safely send messages multiple times without them being delivered multiple
times.
pub(crate) use crate::messages::*;
The message will be ordered by this service, with the order having no guarantees other than
successful ordering by the time this call returns.
*/
fn queue_message(meta: Metadata, msg: Vec<u8>, sig: SchnorrSignature<Ristretto>) {
{
let from = (*KEYS).read().unwrap()[&meta.from];
assert!(
sig.verify(from, message_challenge(meta.from, from, meta.to, &meta.intent, &msg, sig.R))
);
pub(crate) use crate::queue::Queue;
pub(crate) type Db = serai_db::RocksDB;
lazy_static::lazy_static! {
pub(crate) static ref KEYS: Arc<RwLock<HashMap<Service, <Ristretto as Ciphersuite>::G>>> =
Arc::new(RwLock::new(HashMap::new()));
pub(crate) static ref QUEUES: Arc<RwLock<HashMap<Service, RwLock<Queue<Db>>>>> =
Arc::new(RwLock::new(HashMap::new()));
}
// Assert one, and only one of these, is the coordinator
assert!(matches!(meta.from, Service::Coordinator) ^ matches!(meta.to, Service::Coordinator));
// queue RPC method
/*
Queues a message to be delivered from a processor to a coordinator, or vice versa.
// TODO: Verify (from, intent) hasn't been prior seen
Messages are authenticated to be coming from the claimed service. Recipient services SHOULD
independently verify signatures.
// Queue it
let id = (*QUEUES).read().unwrap()[&meta.to].write().unwrap().queue_message(QueuedMessage {
from: meta.from,
// Temporary value which queue_message will override
id: u64::MAX,
msg,
sig: sig.serialize(),
});
The metadata specifies an intent. Only one message, for a specified intent, will be delivered.
This allows services to safely send messages multiple times without them being delivered
multiple times.
log::info!("Queued message from {:?}. It is {:?} {id}", meta.from, meta.to);
}
The message will be ordered by this service, with the order having no guarantees other than
successful ordering by the time this call returns.
*/
pub(crate) fn queue_message(meta: Metadata, msg: Vec<u8>, sig: SchnorrSignature<Ristretto>) {
{
let from = (*KEYS).read().unwrap()[&meta.from];
assert!(
sig.verify(from, message_challenge(meta.from, from, meta.to, &meta.intent, &msg, sig.R))
);
}
// next RPC method
/*
Gets the next message in queue for this service.
// Assert one, and only one of these, is the coordinator
assert!(matches!(meta.from, Service::Coordinator) ^ matches!(meta.to, Service::Coordinator));
This is not authenticated due to the fact every nonce would have to be saved to prevent replays,
or a challenge-response protocol implemented. Neither are worth doing when there should be no
sensitive data on this server.
// TODO: Verify (from, intent) hasn't been prior seen
The expected index is used to ensure a service didn't fall out of sync with this service. It
should always be either the next message's ID or *TODO*.
*/
fn get_next_message(service: Service, _expected: u64) -> Option<QueuedMessage> {
// TODO: Verify the expected next message ID matches
// Queue it
let id = (*QUEUES).read().unwrap()[&meta.to].write().unwrap().queue_message(QueuedMessage {
from: meta.from,
// Temporary value which queue_message will override
id: u64::MAX,
msg,
sig: sig.serialize(),
});
let queue_outer = (*QUEUES).read().unwrap();
let queue = queue_outer[&service].read().unwrap();
let next = queue.last_acknowledged().map(|i| i + 1).unwrap_or(0);
queue.get_message(next)
}
// ack RPC method
/*
Acknowledges a message as received and handled, meaning it'll no longer be returned as the next
message.
*/
fn ack_message(service: Service, id: u64, sig: SchnorrSignature<Ristretto>) {
{
let from = (*KEYS).read().unwrap()[&service];
assert!(sig.verify(from, ack_challenge(service, from, id, sig.R)));
log::info!("Queued message from {:?}. It is {:?} {id}", meta.from, meta.to);
}
// Is it:
// The acknowledged message should be > last acknowledged OR
// The acknowledged message should be >=
// It's the first if we save messages as acknowledged before acknowledging them
// It's the second if we acknowledge messages before saving them as acknowledged
// TODO: Check only a proper message is being acked
// next RPC method
/*
Gets the next message in queue for this service.
log::info!("{:?} is acknowledging {}", service, id);
This is not authenticated due to the fact every nonce would have to be saved to prevent replays,
or a challenge-response protocol implemented. Neither are worth doing when there should be no
sensitive data on this server.
(*QUEUES).read().unwrap()[&service].write().unwrap().ack_message(id)
The expected index is used to ensure a service didn't fall out of sync with this service. It
should always be either the next message's ID or *TODO*.
*/
pub(crate) fn get_next_message(service: Service, _expected: u64) -> Option<QueuedMessage> {
// TODO: Verify the expected next message ID matches
let queue_outer = (*QUEUES).read().unwrap();
let queue = queue_outer[&service].read().unwrap();
let next = queue.last_acknowledged().map(|i| i + 1).unwrap_or(0);
queue.get_message(next)
}
// ack RPC method
/*
Acknowledges a message as received and handled, meaning it'll no longer be returned as the next
message.
*/
pub(crate) fn ack_message(service: Service, id: u64, sig: SchnorrSignature<Ristretto>) {
{
let from = (*KEYS).read().unwrap()[&service];
assert!(sig.verify(from, ack_challenge(service, from, id, sig.R)));
}
// Is it:
// The acknowledged message should be > last acknowledged OR
// The acknowledged message should be >=
// It's the first if we save messages as acknowledged before acknowledging them
// It's the second if we acknowledge messages before saving them as acknowledged
// TODO: Check only a proper message is being acked
log::info!("{:?} is acknowledging {}", service, id);
(*QUEUES).read().unwrap()[&service].write().unwrap().ack_message(id)
}
}
#[cfg(feature = "binaries")]
#[tokio::main]
async fn main() {
use binaries::*;
if std::env::var("RUST_LOG").is_err() {
std::env::set_var("RUST_LOG", serai_env::var("RUST_LOG").unwrap_or_else(|| "info".to_string()));
}
@ -192,3 +201,8 @@ async fn main() {
// Run until stopped, which it never will
server.start(module).unwrap().stopped().await;
}
#[cfg(not(feature = "binaries"))]
fn main() {
panic!("To run binaries, please build with `--feature binaries`.");
}