3.6.9 Add several tests to the FROST library

Offset signing is now tested. Multi-nonce algorithms are now tested.
Multi-generator nonce algorithms are now tested. More fault cases are now tested
as well.
This commit is contained in:
Luke Parker 2023-03-01 08:02:45 -05:00
parent c6284b85a4
commit 2fd5cd8161
No known key found for this signature in database
5 changed files with 336 additions and 47 deletions

View file

@ -365,6 +365,7 @@ impl<C: Ciphersuite> ThresholdKeys<C> {
/// Offset the keys by a given scalar to allow for account and privacy schemes. /// Offset the keys by a given scalar to allow for account and privacy schemes.
/// This offset is ephemeral and will not be included when these keys are serialized. /// This offset is ephemeral and will not be included when these keys are serialized.
/// Keys offset multiple times will form a new offset of their sum. /// Keys offset multiple times will form a new offset of their sum.
#[must_use]
pub fn offset(&self, offset: C::F) -> ThresholdKeys<C> { pub fn offset(&self, offset: C::F) -> ThresholdKeys<C> {
let mut res = self.clone(); let mut res = self.clone();
// Carry any existing offset // Carry any existing offset

View file

@ -6,7 +6,7 @@ use rand_core::{RngCore, CryptoRng};
use transcript::Transcript; use transcript::Transcript;
use crate::{Curve, Participant, FrostError, ThresholdKeys, ThresholdView}; use crate::{Participant, ThresholdKeys, ThresholdView, Curve, FrostError};
pub use schnorr::SchnorrSignature; pub use schnorr::SchnorrSignature;
/// Write an addendum to a writer. /// Write an addendum to a writer.

View file

@ -5,11 +5,15 @@ use rand_core::{RngCore, CryptoRng};
pub use dkg::tests::{key_gen, recover_key}; pub use dkg::tests::{key_gen, recover_key};
use crate::{ use crate::{
Curve, Participant, ThresholdKeys, Curve, Participant, ThresholdKeys, FrostError,
algorithm::Algorithm, algorithm::{Algorithm, Hram, Schnorr},
sign::{Writable, PreprocessMachine, SignMachine, SignatureMachine, AlgorithmMachine}, sign::{Writable, PreprocessMachine, SignMachine, SignatureMachine, AlgorithmMachine},
}; };
/// Tests for the nonce handling code.
pub mod nonces;
use nonces::{test_multi_nonce, test_invalid_commitment, test_invalid_dleq_proof};
/// Vectorized test suite to ensure consistency. /// Vectorized test suite to ensure consistency.
pub mod vectors; pub mod vectors;
@ -62,9 +66,8 @@ pub fn algorithm_machines<R: RngCore, C: Curve, A: Algorithm<C>>(
.collect() .collect()
} }
// Run the commit step and generate signature shares // Run the preprocess step
#[allow(clippy::type_complexity)] pub(crate) fn preprocess<
pub(crate) fn commit_and_shares<
R: RngCore + CryptoRng, R: RngCore + CryptoRng,
M: PreprocessMachine, M: PreprocessMachine,
F: FnMut(&mut R, &mut HashMap<Participant, M::SignMachine>), F: FnMut(&mut R, &mut HashMap<Participant, M::SignMachine>),
@ -72,11 +75,7 @@ pub(crate) fn commit_and_shares<
rng: &mut R, rng: &mut R,
mut machines: HashMap<Participant, M>, mut machines: HashMap<Participant, M>,
mut cache: F, mut cache: F,
msg: &[u8], ) -> (HashMap<Participant, M::SignMachine>, HashMap<Participant, M::Preprocess>) {
) -> (
HashMap<Participant, <M::SignMachine as SignMachine<M::Signature>>::SignatureMachine>,
HashMap<Participant, <M::SignMachine as SignMachine<M::Signature>>::SignatureShare>,
) {
let mut commitments = HashMap::new(); let mut commitments = HashMap::new();
let mut machines = machines let mut machines = machines
.drain() .drain()
@ -93,6 +92,26 @@ pub(crate) fn commit_and_shares<
cache(rng, &mut machines); cache(rng, &mut machines);
(machines, commitments)
}
// Run the preprocess and generate signature shares
#[allow(clippy::type_complexity)]
pub(crate) fn preprocess_and_shares<
R: RngCore + CryptoRng,
M: PreprocessMachine,
F: FnMut(&mut R, &mut HashMap<Participant, M::SignMachine>),
>(
rng: &mut R,
machines: HashMap<Participant, M>,
cache: F,
msg: &[u8],
) -> (
HashMap<Participant, <M::SignMachine as SignMachine<M::Signature>>::SignatureMachine>,
HashMap<Participant, <M::SignMachine as SignMachine<M::Signature>>::SignatureShare>,
) {
let (mut machines, commitments) = preprocess(rng, machines, cache);
let mut shares = HashMap::new(); let mut shares = HashMap::new();
let machines = machines let machines = machines
.drain() .drain()
@ -120,7 +139,7 @@ fn sign_internal<
cache: F, cache: F,
msg: &[u8], msg: &[u8],
) -> M::Signature { ) -> M::Signature {
let (mut machines, shares) = commit_and_shares(rng, machines, cache, msg); let (mut machines, shares) = preprocess_and_shares(rng, machines, cache, msg);
let mut signature = None; let mut signature = None;
for (i, machine) in machines.drain() { for (i, machine) in machines.drain() {
@ -172,3 +191,67 @@ pub fn sign<R: RngCore + CryptoRng, M: PreprocessMachine>(
msg, msg,
) )
} }
/// Test a basic Schnorr signature.
pub fn test_schnorr<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(rng: &mut R) {
const MSG: &[u8] = b"Hello, World!";
let keys = key_gen(&mut *rng);
let machines = algorithm_machines(&mut *rng, Schnorr::<C, H>::new(), &keys);
let sig = sign(&mut *rng, Schnorr::<C, H>::new(), keys.clone(), machines, MSG);
let group_key = keys[&Participant::new(1).unwrap()].group_key();
assert!(sig.verify(group_key, H::hram(&sig.R, &group_key, MSG)));
}
// Test an offset Schnorr signature.
pub fn test_offset_schnorr<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(rng: &mut R) {
const MSG: &[u8] = b"Hello, World!";
let mut keys = key_gen(&mut *rng);
let group_key = keys[&Participant::new(1).unwrap()].group_key();
let offset = C::F::from(5);
let offset_key = group_key + (C::generator() * offset);
for (_, keys) in keys.iter_mut() {
*keys = keys.offset(offset);
assert_eq!(keys.group_key(), offset_key);
}
let machines = algorithm_machines(&mut *rng, Schnorr::<C, H>::new(), &keys);
let sig = sign(&mut *rng, Schnorr::<C, H>::new(), keys.clone(), machines, MSG);
let group_key = keys[&Participant::new(1).unwrap()].group_key();
assert!(sig.verify(offset_key, H::hram(&sig.R, &group_key, MSG)));
}
// Test blame for an invalid Schnorr signature share.
pub fn test_schnorr_blame<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(rng: &mut R) {
const MSG: &[u8] = b"Hello, World!";
let keys = key_gen(&mut *rng);
let machines = algorithm_machines(&mut *rng, Schnorr::<C, H>::new(), &keys);
let (mut machines, shares) = preprocess_and_shares(&mut *rng, machines, |_, _| {}, MSG);
for (i, machine) in machines.drain() {
let mut shares = clone_without(&shares, &i);
// Select a random participant to give an invalid share
let participants = shares.keys().collect::<Vec<_>>();
let faulty = *participants
[usize::try_from(rng.next_u64() % u64::try_from(participants.len()).unwrap()).unwrap()];
shares.get_mut(&faulty).unwrap().invalidate();
assert_eq!(machine.complete(shares).err(), Some(FrostError::InvalidShare(faulty)));
}
}
// Run a variety of tests against a ciphersuite.
pub fn test_ciphersuite<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(rng: &mut R) {
test_schnorr::<R, C, H>(rng);
test_offset_schnorr::<R, C, H>(rng);
test_schnorr_blame::<R, C, H>(rng);
test_multi_nonce::<R, C>(rng);
test_invalid_commitment::<R, C>(rng);
test_invalid_dleq_proof::<R, C>(rng);
}

View file

@ -0,0 +1,236 @@
use std::io::{self, Read};
use zeroize::Zeroizing;
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha20Rng;
use transcript::{Transcript, RecommendedTranscript};
use group::{ff::Field, Group, GroupEncoding};
use dleq::MultiDLEqProof;
pub use dkg::tests::{key_gen, recover_key};
use crate::{
Curve, Participant, ThresholdView, ThresholdKeys, FrostError,
algorithm::Algorithm,
sign::{Writable, SignMachine},
tests::{algorithm_machines, preprocess, sign},
};
#[derive(Clone)]
struct MultiNonce<C: Curve> {
transcript: RecommendedTranscript,
nonces: Option<Vec<Vec<C::G>>>,
}
impl<C: Curve> MultiNonce<C> {
fn new() -> MultiNonce<C> {
MultiNonce {
transcript: RecommendedTranscript::new(b"FROST MultiNonce Algorithm Test"),
nonces: None,
}
}
}
fn nonces<C: Curve>() -> Vec<Vec<C::G>> {
vec![
vec![C::generator(), C::generator().double()],
vec![C::generator(), C::generator() * C::F::from(3), C::generator() * C::F::from(4)],
]
}
fn verify_nonces<C: Curve>(nonces: &[Vec<C::G>]) {
assert_eq!(nonces.len(), 2);
// Each nonce should be a series of commitments, over some generators, which share a discrete log
// Since they share a discrete log, their only distinction should be the generator
// Above, the generators were created with a known relationship
// Accordingly, we can check here that relationship holds to make sure these commitments are well
// formed
assert_eq!(nonces[0].len(), 2);
assert_eq!(nonces[0][0].double(), nonces[0][1]);
assert_eq!(nonces[1].len(), 3);
assert_eq!(nonces[1][0] * C::F::from(3), nonces[1][1]);
assert_eq!(nonces[1][0] * C::F::from(4), nonces[1][2]);
assert!(nonces[0][0] != nonces[1][0]);
}
impl<C: Curve> Algorithm<C> for MultiNonce<C> {
type Transcript = RecommendedTranscript;
type Addendum = ();
type Signature = ();
fn transcript(&mut self) -> &mut Self::Transcript {
&mut self.transcript
}
fn nonces(&self) -> Vec<Vec<C::G>> {
nonces::<C>()
}
fn preprocess_addendum<R: RngCore + CryptoRng>(&mut self, _: &mut R, _: &ThresholdKeys<C>) {}
fn read_addendum<R: Read>(&self, _: &mut R) -> io::Result<Self::Addendum> {
Ok(())
}
fn process_addendum(
&mut self,
_: &ThresholdView<C>,
_: Participant,
_: (),
) -> Result<(), FrostError> {
Ok(())
}
fn sign_share(
&mut self,
_: &ThresholdView<C>,
nonce_sums: &[Vec<C::G>],
nonces: Vec<Zeroizing<C::F>>,
_: &[u8],
) -> C::F {
// Verify the nonce sums are as expected
verify_nonces::<C>(nonce_sums);
// Verify we actually have two nonces and that they're distinct
assert_eq!(nonces.len(), 2);
assert!(nonces[0] != nonces[1]);
// Save the nonce sums for later so we can check they're consistent with the call to verify
assert!(self.nonces.is_none());
self.nonces = Some(nonce_sums.to_vec());
// Sum the nonces so we can later check they actually have a relationship to nonce_sums
let mut res = C::F::zero();
// Weight each nonce
// This is probably overkill, since their unweighted forms would practically still require
// some level of crafting to pass a naive sum via malleability, yet this makes it more robust
for nonce in nonce_sums {
self.transcript.domain_separate(b"nonce");
for commitment in nonce {
self.transcript.append_message(b"commitment", commitment.to_bytes());
}
}
let mut rng = ChaCha20Rng::from_seed(self.transcript.clone().rng_seed(b"weight"));
for nonce in nonces {
res += *nonce * C::F::random(&mut rng);
}
res
}
#[must_use]
fn verify(&self, _: C::G, nonces: &[Vec<C::G>], sum: C::F) -> Option<Self::Signature> {
verify_nonces::<C>(nonces);
assert_eq!(&self.nonces.clone().unwrap(), nonces);
// Make sure the nonce sums actually relate to the nonces
let mut res = C::G::identity();
let mut rng = ChaCha20Rng::from_seed(self.transcript.clone().rng_seed(b"weight"));
for nonce in nonces {
res += nonce[0] * C::F::random(&mut rng);
}
assert_eq!(res, C::generator() * sum);
Some(())
}
fn verify_share(&self, _: C::G, _: &[Vec<C::G>], _: C::F) -> Result<Vec<(C::F, C::G)>, ()> {
panic!("share verification triggered");
}
}
/// Test a multi-nonce, multi-generator algorithm.
// Specifically verifies this library can:
// 1) Generate multiple nonces
// 2) Provide the group nonces (nonce_sums) across multiple generators, still with the same
// discrete log
// 3) Provide algorithms with nonces which match the group nonces
pub fn test_multi_nonce<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
let keys = key_gen::<R, C>(&mut *rng);
let machines = algorithm_machines(&mut *rng, MultiNonce::<C>::new(), &keys);
sign(&mut *rng, MultiNonce::<C>::new(), keys.clone(), machines, &[]);
}
/// Test malleating a commitment for a nonce across generators causes the preprocess to error.
pub fn test_invalid_commitment<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
let keys = key_gen::<R, C>(&mut *rng);
let machines = algorithm_machines(&mut *rng, MultiNonce::<C>::new(), &keys);
let (machines, mut preprocesses) = preprocess(&mut *rng, machines, |_, _| {});
// Select a random participant to give an invalid commitment
let participants = preprocesses.keys().collect::<Vec<_>>();
let faulty = *participants
[usize::try_from(rng.next_u64() % u64::try_from(participants.len()).unwrap()).unwrap()];
// Grab their preprocess
let mut preprocess = preprocesses.remove(&faulty).unwrap();
// Mutate one of the commitments
let nonce =
preprocess.commitments.nonces.get_mut(usize::try_from(rng.next_u64()).unwrap() % 2).unwrap();
let generators_len = nonce.generators.len();
*nonce
.generators
.get_mut(usize::try_from(rng.next_u64()).unwrap() % generators_len)
.unwrap()
.0
.get_mut(usize::try_from(rng.next_u64()).unwrap() % 2)
.unwrap() = C::G::random(&mut *rng);
// The commitments are validated at time of deserialization (read_preprocess)
// Accordingly, serialize it and read it again to make sure that errors
assert!(machines
.iter()
.next()
.unwrap()
.1
.read_preprocess::<&[u8]>(&mut preprocess.serialize().as_ref())
.is_err());
}
/// Test malleating the DLEq proof for a preprocess causes it to error.
pub fn test_invalid_dleq_proof<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
let keys = key_gen::<R, C>(&mut *rng);
let machines = algorithm_machines(&mut *rng, MultiNonce::<C>::new(), &keys);
let (machines, mut preprocesses) = preprocess(&mut *rng, machines, |_, _| {});
// Select a random participant to give an invalid DLEq proof
let participants = preprocesses.keys().collect::<Vec<_>>();
let faulty = *participants
[usize::try_from(rng.next_u64() % u64::try_from(participants.len()).unwrap()).unwrap()];
// Invalidate it by replacing it with a completely different proof
let dlogs = [Zeroizing::new(C::F::random(&mut *rng)), Zeroizing::new(C::F::random(&mut *rng))];
let mut preprocess = preprocesses.remove(&faulty).unwrap();
preprocess.commitments.dleq = Some(MultiDLEqProof::prove(
&mut *rng,
&mut RecommendedTranscript::new(b"Invalid DLEq Proof"),
&nonces::<C>(),
&dlogs,
));
assert!(machines
.iter()
.next()
.unwrap()
.1
.read_preprocess::<&[u8]>(&mut preprocess.serialize().as_ref())
.is_err());
// Also test None for a proof will cause an error
preprocess.commitments.dleq = None;
assert!(machines
.iter()
.next()
.unwrap()
.1
.read_preprocess::<&[u8]>(&mut preprocess.serialize().as_ref())
.is_err());
}

View file

@ -11,17 +11,15 @@ use rand_chacha::ChaCha20Rng;
use group::{ff::PrimeField, GroupEncoding}; use group::{ff::PrimeField, GroupEncoding};
use dkg::tests::key_gen;
use crate::{ use crate::{
curve::Curve, curve::Curve,
Participant, ThresholdCore, ThresholdKeys, FrostError, Participant, ThresholdCore, ThresholdKeys,
algorithm::{IetfTranscript, Schnorr, Hram}, algorithm::{IetfTranscript, Hram, Schnorr},
sign::{ sign::{
Writable, Nonce, GeneratorCommitments, NonceCommitments, Commitments, Preprocess, Writable, Nonce, GeneratorCommitments, NonceCommitments, Commitments, Preprocess,
PreprocessMachine, SignMachine, SignatureMachine, AlgorithmMachine, PreprocessMachine, SignMachine, SignatureMachine, AlgorithmMachine,
}, },
tests::{clone_without, recover_key, algorithm_machines, commit_and_shares, sign}, tests::{clone_without, recover_key, test_ciphersuite},
}; };
pub struct Vectors { pub struct Vectors {
@ -147,36 +145,7 @@ pub fn test_with_vectors<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(
rng: &mut R, rng: &mut R,
vectors: Vectors, vectors: Vectors,
) { ) {
// Test a basic Schnorr signature test_ciphersuite::<R, C, H>(rng);
{
let keys = key_gen(&mut *rng);
let machines = algorithm_machines(&mut *rng, Schnorr::<C, H>::new(), &keys);
const MSG: &[u8] = b"Hello, World!";
let sig = sign(&mut *rng, Schnorr::<C, H>::new(), keys.clone(), machines, MSG);
let group_key = keys[&Participant::new(1).unwrap()].group_key();
assert!(sig.verify(group_key, H::hram(&sig.R, &group_key, MSG)));
}
// Test blame on an invalid Schnorr signature share
{
let keys = key_gen(&mut *rng);
let machines = algorithm_machines(&mut *rng, Schnorr::<C, H>::new(), &keys);
const MSG: &[u8] = b"Hello, World!";
let (mut machines, mut shares) = commit_and_shares(&mut *rng, machines, |_, _| {}, MSG);
let faulty = *shares.keys().next().unwrap();
shares.get_mut(&faulty).unwrap().invalidate();
for (i, machine) in machines.drain() {
if i == faulty {
continue;
}
assert_eq!(
machine.complete(clone_without(&shares, &i)).err(),
Some(FrostError::InvalidShare(faulty))
);
}
}
// Test against the vectors // Test against the vectors
let keys = vectors_to_multisig_keys::<C>(&vectors); let keys = vectors_to_multisig_keys::<C>(&vectors);