Rewrite the cross-group DLEq API to not allow proving for biased scalars

This commit is contained in:
Luke Parker 2022-07-02 02:46:40 -04:00
parent 7e058f1c08
commit 2e35854215
No known key found for this signature in database
GPG key ID: F9F1386DB1E119B6
3 changed files with 115 additions and 32 deletions

View file

@ -10,6 +10,8 @@ edition = "2021"
thiserror = "1" thiserror = "1"
rand_core = "0.6" rand_core = "0.6"
digest = "0.10"
subtle = "2.4" subtle = "2.4"
transcript = { package = "flexible-transcript", path = "../transcript", version = "0.1" } transcript = { package = "flexible-transcript", path = "../transcript", version = "0.1" }
@ -21,6 +23,9 @@ multiexp = { path = "../multiexp" }
[dev-dependencies] [dev-dependencies]
hex-literal = "0.3" hex-literal = "0.3"
blake2 = "0.10"
k256 = { version = "0.11", features = ["arithmetic", "bits"] } k256 = { version = "0.11", features = ["arithmetic", "bits"] }
dalek-ff-group = { path = "../dalek-ff-group" } dalek-ff-group = { path = "../dalek-ff-group" }

View file

@ -1,6 +1,8 @@
use thiserror::Error; use thiserror::Error;
use rand_core::{RngCore, CryptoRng}; use rand_core::{RngCore, CryptoRng};
use digest::Digest;
use subtle::{Choice, ConditionallySelectable}; use subtle::{Choice, ConditionallySelectable};
use transcript::Transcript; use transcript::Transcript;
@ -182,21 +184,12 @@ impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref()); transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref());
} }
/// Prove the cross-Group Discrete Log Equality for the points derived from the provided Scalar. fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
/// Since DLEq is proven for the same Scalar in both fields, and the provided Scalar may not be
/// valid in the other Scalar field, the Scalar is normalized as needed and the normalized forms
/// are returned. These are the actually equal discrete logarithms. The passed in Scalar is
/// solely to enable various forms of Scalar generation, such as deterministic schemes
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R, rng: &mut R,
transcript: &mut T, transcript: &mut T,
generators: (Generators<G0>, Generators<G1>), generators: (Generators<G0>, Generators<G1>),
f: G0::Scalar f: (G0::Scalar, G1::Scalar)
) -> (Self, (G0::Scalar, G1::Scalar)) { ) -> (Self, (G0::Scalar, G1::Scalar)) {
// At least one bit will be dropped from either field element, making it irrelevant which one
// we get a random element in
let f = scalar_normalize::<_, G1::Scalar>(f);
Self::initialize_transcript( Self::initialize_transcript(
transcript, transcript,
generators, generators,
@ -270,6 +263,39 @@ impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
(proof, f) (proof, f)
} }
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
/// the output of the passed in Digest. Given the non-standard requirements to achieve
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
/// to safely and securely generate a Scalar, without risk of failure, nor bias
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
/// the relationship between keys would allow breaking all swaps after just one
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
digest: D
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::prove_internal(
rng,
transcript,
generators,
Self::mutual_scalar_from_bytes(digest.finalize().as_ref())
)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
/// scalars until they're safely usable, as needed
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f0: G0::Scalar
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
}
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for /// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
pub fn verify<T: Clone + Transcript>( pub fn verify<T: Clone + Transcript>(
&self, &self,

View file

@ -2,23 +2,26 @@ mod scalar;
mod schnorr; mod schnorr;
use hex_literal::hex; use hex_literal::hex;
use rand_core::OsRng; use rand_core::{RngCore, OsRng};
use ff::Field; use ff::{Field, PrimeField};
use group::{Group, GroupEncoding}; use group::{Group, GroupEncoding};
use k256::{Scalar, ProjectivePoint}; use k256::{Scalar, ProjectivePoint};
use dalek_ff_group::{EdwardsPoint, CompressedEdwardsY}; use dalek_ff_group::{self as dfg, EdwardsPoint, CompressedEdwardsY};
use blake2::{Digest, Blake2b512};
use transcript::RecommendedTranscript; use transcript::RecommendedTranscript;
use crate::{Generators, cross_group::DLEqProof}; use crate::{Generators, cross_group::DLEqProof};
#[test] fn transcript() -> RecommendedTranscript {
fn test_dleq() { RecommendedTranscript::new(b"Cross-Group DLEq Proof Test")
let transcript = || RecommendedTranscript::new(b"Cross-Group DLEq Proof Test"); }
let generators = ( fn generators() -> (Generators<ProjectivePoint>, Generators<EdwardsPoint>) {
(
Generators::new( Generators::new(
ProjectivePoint::GENERATOR, ProjectivePoint::GENERATOR,
ProjectivePoint::from_bytes( ProjectivePoint::from_bytes(
@ -32,23 +35,72 @@ fn test_dleq() {
hex!("8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94") hex!("8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94")
).decompress().unwrap() ).decompress().unwrap()
) )
)
}
#[test]
fn test_rejection_sampling() {
let mut pow_2 = Scalar::one();
for _ in 0 .. dfg::Scalar::CAPACITY {
pow_2 = pow_2.double();
}
assert!(
DLEqProof::prove_without_bias(
&mut OsRng,
&mut RecommendedTranscript::new(b""),
generators(),
pow_2
).is_none()
); );
}
let key = Scalar::random(&mut OsRng); #[test]
let (proof, keys) = DLEqProof::prove(&mut OsRng, &mut transcript(), generators, key); fn test_dleq() {
let generators = generators();
let public_keys = proof.verify(&mut transcript(), generators).unwrap(); for i in 0 .. 2 {
assert_eq!(generators.0.primary * keys.0, public_keys.0); let (proof, keys) = if i == 0 {
assert_eq!(generators.1.primary * keys.1, public_keys.1); let mut seed = [0; 32];
OsRng.fill_bytes(&mut seed);
#[cfg(feature = "serialize")] DLEqProof::prove(
{ &mut OsRng,
let mut buf = vec![]; &mut transcript(),
proof.serialize(&mut buf).unwrap(); generators,
let deserialized = DLEqProof::<ProjectivePoint, EdwardsPoint>::deserialize( Blake2b512::new().chain_update(seed)
&mut std::io::Cursor::new(&buf) )
).unwrap(); } else {
assert_eq!(proof, deserialized); let mut key;
deserialized.verify(&mut transcript(), generators).unwrap(); let mut res;
while {
key = Scalar::random(&mut OsRng);
res = DLEqProof::prove_without_bias(
&mut OsRng,
&mut transcript(),
generators,
key
);
res.is_none()
} {}
let res = res.unwrap();
assert_eq!(key, res.1.0);
res
};
let public_keys = proof.verify(&mut transcript(), generators).unwrap();
assert_eq!(generators.0.primary * keys.0, public_keys.0);
assert_eq!(generators.1.primary * keys.1, public_keys.1);
#[cfg(feature = "serialize")]
{
let mut buf = vec![];
proof.serialize(&mut buf).unwrap();
let deserialized = DLEqProof::<ProjectivePoint, EdwardsPoint>::deserialize(
&mut std::io::Cursor::new(&buf)
).unwrap();
assert_eq!(proof, deserialized);
deserialized.verify(&mut transcript(), generators).unwrap();
}
} }
} }